Skip to main content
Log in

Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozyme based on Prussian blue nanocubes (PB NCs) loaded with copper nanoparticles (Cu@PB NCs) was synthesized. The peroxidase (POD)-like activity of Cu@PB NCs was studied and utilized for detecting the activity of alkaline phosphatase (ALP). The Cu@PB NCs possess higher POD-like activity compared with PB NCs and natural horseradish peroxidase (HRP) due to the loading of copper nanoparticles. 3,3′,5,5′-Tetramethylbenzidine (TMB) can be oxidized to oxTMB in the presence of Cu@PB NCs and H2O2, generating blue-colored compound, while introduction of pyrophosphate (PPi) leads to the POD-like activity of Cu@PB NCs decreased obviously. In the presence of ALP, PPi was hydrolyzed and then the POD-like activity of Cu@PB NCs was restored. So, according to the change of the POD-like activity of Cu@PB NCs, a sensitive colorimetric assay for ALP activity was reported. The limit of detection of the assay is 0.08 mU/mL, with linear range from 0.1 to 50 mU/mL. In addition, the assay was also applied for screening the inhibitors of ALP.

Graphical abstract

Nanozyme based on Prussian blue nanocube (PB NCs) loaded with copper nanoparticles was synthesized and utilized for detecting the activity of alkaline phosphatase (ALP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stinghen ST, Moura JF, Zancanella P, Rodrigues GA, Pianovski MA, Lalli E, et al. Specific immunoassays for placental alkaline phosphatase as a tumor marker. J Biomed Biotechnol. 2006;2006:056087.

    Article  Google Scholar 

  2. Loke SC, Tan AWK, Dalan R, Leow MK-S. Pre-operative serum alkaline phosphatase as a predictor for hypocalcemia post-parathyroid adenectomy. Int J Med Sci. 2012;9(7):611–6.

    Article  CAS  Google Scholar 

  3. Liu X, Zou L, Yang X, Wang Q, Zheng Y, Geng X, et al. Point-of-care assay of alkaline phosphatase enzymatic activity using a thermometer or temperature discoloration sticker as readout. Anal Chem. 2019;91(12):7943–9.

    Article  CAS  Google Scholar 

  4. Zhang L, Nie J, Wang H, Yang J, Wang B, Zhang Y, et al. Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Anal Methods. 2017;9(22):3375–9.

    Article  CAS  Google Scholar 

  5. Peters E, Masereeuw R, Pickkers P. The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury. Nephron Clin Pract. 2014;127(1–4):144–8.

    Article  CAS  Google Scholar 

  6. Jiang Y, Li X, Walt DR. Single-molecule analysis determines isozymes of human alkaline phosphatase in serum. Angew Chem Int Ed. 2020;59(41):18010–5.

    Article  CAS  Google Scholar 

  7. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412.

    Article  CAS  Google Scholar 

  8. Zhang T, Xing Y, Song Y, Gu Y, Yan X, Lu N, et al. AuPt/MOF-graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal Chem. 2019;91(16):10589–95.

    Article  CAS  Google Scholar 

  9. Zhang J, Wu S, Lu X, Wu P, Liu J. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019;19(5):3214–20.

    Article  CAS  Google Scholar 

  10. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  Google Scholar 

  11. Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48(13):2308–12.

    Article  CAS  Google Scholar 

  12. Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed. 2019;58(36):12624–31.

    Article  CAS  Google Scholar 

  13. Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, et al. Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem. 2018;90(11):6742–8.

    Article  CAS  Google Scholar 

  14. Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018;18(6):3344–51.

    Article  CAS  Google Scholar 

  15. Niu J, Sun Y, Wang F, Zhao C, Ren J, Qu X. Photomodulated nanozyme used for a gram-selective antimicrobial. Chem Mater. 2018;30(20):7027–33.

    Article  CAS  Google Scholar 

  16. Jiang X, Liu K, Li Q, Liu M, Yang M, Chen X. B-Doped core–shell Fe@BC nanozymes: active site identification and bacterial inhibition. Chem Commun. 2021;57(13):1623–6.

    Article  CAS  Google Scholar 

  17. Li S, Ma X, Pang C, Wang M, Yin G, Xu Z, et al. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens Bioelectron. 2021;176:112944.

    Article  CAS  Google Scholar 

  18. Zhu Y, Wu J, Han L, Wang X, Li W, Guo H, et al. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal Chem. 2020;92(11):7444–52.

    Article  CAS  Google Scholar 

  19. Wu T, Ma Z, Li P, Lu Q, Liu M, Li H, et al. Bifunctional colorimetric biosensors via regulation of the dual nanoenzyme activity of carbonized FeCo-ZIF. Sensors Actuators B Chem. 2019;290:357–63.

    Article  CAS  Google Scholar 

  20. Fang A, Chen H, Li H, Liu M, Zhang Y, Yao S. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosens Bioelectron. 2017;87:545–51.

    Article  CAS  Google Scholar 

  21. Tian B, Zhao L, Li R, Zhai T, Zhang N, Duan Z, et al. Electrochemical immunoassay of endothelin-1 based on a Fenton-type reaction using Cu(II)-containing nanocomposites as nanozymes. Anal Chem. 2020;92(24):15916–26.

    Article  CAS  Google Scholar 

  22. Yu L, Li M, Kang Q, Fu L, Zou G, Shen D. Bovine serum albumin-stabilized silver nanoclusters with anodic electrochemiluminescence peak at 904 nm in aqueous medium and applications in spectrum-resolved multiplexing immunoassay. Biosens Bioelectron. 2020;176:112934.

    Article  Google Scholar 

  23. Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, et al. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater. 2020;32(42):e2002439.

    Article  Google Scholar 

  24. Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, et al. The application of Prussian blue nanoparticles in tumor diagnosis and treatment. Sensors. 2020;20(23).

  25. Komkova MA, Ibragimova OA, Karyakina EE, Karyakin AA. Catalytic pathway of nanozyme “artificial peroxidase” with 100-fold greater bimolecular rate constants compared to those of the enzyme. J Phys Chem Lett. 2021;12(1):171–6.

    Article  CAS  Google Scholar 

  26. Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5.

    Article  CAS  Google Scholar 

  27. Zhang W, Zhang Y, Chen Y, Li S, Gu N, Hu S, et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J Nanosci Nanotechnol. 2013;13(1):60–7.

    Article  CAS  Google Scholar 

  28. Shiba F, Mameuda U, Tatejima S, Okawa Y. Synthesis of uniform Prussian blue nanoparticles by a polyol process using a polyethylene glycol aqueous solution. RSC Adv. 2019;9(59):34589–94.

    Article  CAS  Google Scholar 

  29. Guo L, Chen D, Yang M. DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchim Acta. 2017;184(7):2165–70.

    Article  CAS  Google Scholar 

  30. Li X, Luo J, Jiang X, Yang M, Rasooly A. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Microchim Acta. 2021;188(1):26.

    Article  CAS  Google Scholar 

  31. Lv J, Wang S, Zhang C, Lin Y, Fu Y, Li M. ATP induced alteration in the peroxidase-like properties of hollow Prussian blue nanocubes: a platform for alkaline phosphatase detection. Analyst. 2020;145(14):5032–40.

    Article  CAS  Google Scholar 

  32. Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, et al. Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal Chem. 2019;91(23):15017–24.

    Article  CAS  Google Scholar 

  33. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron. 2016;85:220–5.

    Article  CAS  Google Scholar 

  34. Liu H, Wei L, Hua J, Chen D, Meng H, Li Z, et al. Enzyme activity-modulated etching of gold nanobipyramids@MnO2 nanoparticles for ALP assay using surface-enhanced Raman spectroscopy. Nanoscale. 2020;12(18):10390–8.

    Article  CAS  Google Scholar 

  35. Zhong Y, Xue F, Wei P, Li R, Cao C, Yi T. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale. 2018;10(45):21298–306.

    Article  CAS  Google Scholar 

  36. Song H, Li Z, Peng Y, Li X, Xu X, Pan J, et al. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst. 2019;144(7):2416–22.

    Article  CAS  Google Scholar 

  37. Wang W, Lu J, Hao L, Yang H, Song X, Si F. Electrochemical detection of alkaline phosphatase activity through enzyme-catalyzed reaction using aminoferrocene as an electroactive probe. Anal Bioanal Chem. 2021;413(7):1827–36.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Hunan Provincial Science and Technology Plan Project, China (No. 2019TP1001) and Innovation-Driven Project of Central South University (2020CX002) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Xianggui Wang.

Ethics declarations

Ethics approval

All experiments were in accordance with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of the Second Xiangya Hospital that attached to Central South University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Jiang, X., Yang, M. et al. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem 413, 3955–3963 (2021). https://doi.org/10.1007/s00216-021-03347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03347-y

Keywords

Navigation