Skip to main content
Log in

A colorimetric paper-based ATONP-ALP nanobiosensor for selective detection of Cd2+ ions in clams and mussels

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A colorimetric paper-based enzyme-coupled antimony tin oxide nanoparticle (ATONP) nanobiosensor for selective detection of Cd2+ ions in clams and mussels is presented. Alkaline phosphatase (ALP) was immobilized on ATONPs via 16-phosphonohexadecanoic acid (16-PHA) to develop ATONP-ALP nanobiosensor. The biosensor was characterized using XPS, Raman spectroscopy, SEM, and EDX. ATONP-ALP nanobiosensor exhibited high selectivity towards detection of Cd2+ ion with a LOD 0.006 μg L−1 and linear range of detection 0.005–1 μg L−1. The developed biosensor was further integrated into a low-cost paper-based format. A visual color change was obtained for Cd2+ ion in the range 0.1–10 μg L−1. The developed biosensor was successfully demonstrated for the analysis of Cd2+ ions in clams with recoveries 101–104%. The ATONP-ALP nanobiosensor was validated using mussel tissue (BCR-668) and the conventional ICP-OES and ICP-MS techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reimann C, Fabian K, Flem B. Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals. Sci Total Environ. 2019;651:1344–55.

    Article  CAS  PubMed  Google Scholar 

  2. Mezynska M, Brzóska MM. Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies. Environ Sci Pollut Res. 2018;25(4):3211–32.

    Article  CAS  Google Scholar 

  3. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 1988;333(6169):134–9.

    Article  CAS  PubMed  Google Scholar 

  4. Dharma-wardana MWC. Fertilizer usage and cadmium in soils, crops and food. Environ Geochem Health. 2018;40(6):2739–59.

    Article  CAS  PubMed  Google Scholar 

  5. Simpson W. A critical review of cadmium in the marine environment. Prog Oceanogr. 1981;10(1):1–70.

    Article  Google Scholar 

  6. Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  7. Nishijo M, Nakagawa H. Effects of cadmium exposure on life prognosis. Cadmium Toxicity. Singapore: Springer; 2019. p. 63–73.

    Google Scholar 

  8. Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem. 2000;79(1–4):241–4.

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Sheng J, Hong Y, Peng K, Wang J, Wu D, et al. Molecular characterization and expression of metallothionein from freshwater pearl mussel, Hyriopsis schlegelii. Biosci Biotechnol Biochem. 2016;80(7):1327–35.

    Article  CAS  PubMed  Google Scholar 

  10. Couillard Y, Campbell PGC, Tessier A. Response of metallothionein concentrations in a freshwater bivalve (Anodonta grandis) along an environmental cadmium gradient. Limnol Oceanogr. 1993;38(2):299–313.

    Article  CAS  Google Scholar 

  11. JECFA, Joint FAO/WHO. Food Standards Programme Codex Alimentarius Commission, Report of the 38th session of the Codex Committee on Food Additives and Contaminants, LINORM 06/12A. 2006.

  12. FSSAI, Food Safety, and Standards (Contaminants, Toxins, and Residues) Regulations 2011, Notification No. 2-15015/30/2010.

  13. Li L, Hu B, Xia L, Jiang Z. Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta. 2006;70(2):468–73.

    Article  CAS  PubMed  Google Scholar 

  14. Soylak M, Kars A, Narin I. Coprecipitation of Ni2+, Cd2+ and Pb2+ for preconcentration in environmental samples prior to flame atomic absorption spectrometric determinations. J Hazard Mater. 2008;159(2):435–9.

    Article  CAS  PubMed  Google Scholar 

  15. Suleiman JS, Hu B, Huang C, Zhang N. Determination of Cd, Co, Ni and Pb in biological samples by microcolumn packed with black stone (Pierre noire) online coupled with ICP-OES. J Hazard Mater. 2008;157(2):410–7.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Fang X, Li H, Cao H, Kong J. A simple paper-based colorimetric device for rapid mercury (II) assay. Sci Rep. 2016;6(1):31948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS. Simple, distance-based measurement for paper analytical devices. Lab Chip. 2013;13(12):2397–404.

    Article  CAS  PubMed  Google Scholar 

  18. Yan J, Ge L, Song X, Yan M, Ge S, Yu J. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J. 2012;18(16):4938–45.

    Article  CAS  PubMed  Google Scholar 

  19. He M, Liu Z. Based microfluidic device with upconversion fluorescence assay. Anal Chem. 2013;85(24):11691–4.

    Article  CAS  PubMed  Google Scholar 

  20. Ge L, Yan J, Song X, Yan M, Ge S, Yu J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–31.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed. 2010;49(28):4771–4.

    Article  CAS  Google Scholar 

  22. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, et al. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem. 2014;86(19):9554–62.

    Article  CAS  PubMed  Google Scholar 

  23. Sener G, Uzun L, Denizli A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl Mater Interfaces. 2014;6(21):18395–400.

    Article  CAS  PubMed  Google Scholar 

  24. Homaei A. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf. 2017;136:1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lei C, Dai H, Fu Y, Ying Y, Li Y. Colorimetric sensor array for thiols discrimination based on urease–metal ion pairs. Anal Chem. 2016;88(17):8542–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tang Z, Chen H, He H, Ma C. Assays for alkaline phosphatase activity: progress and prospects. Trends Anal Chem. 2019;113:32–43.

    Article  CAS  Google Scholar 

  27. Aldewachi H, Chalati T, Woodroofe M, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale. 2018;10(1):18–33.

    Article  CAS  Google Scholar 

  28. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta. 2014;181(1–2):1–22.

    Article  CAS  Google Scholar 

  29. Rahman MM, Ahmed J, Asiri AM. Development of creatine sensor based on antimony-doped tin oxide (ATO) nanoparticles. Sensors Actuators B Chem. 2017;242:167–75.

    Article  CAS  Google Scholar 

  30. Wang Z, Wang K, Zhao L, Chai S, Zhang J, Zhang X, et al. A novel sensor made of antimony doped tin oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine. Mater Sci Eng C. 2017;80:180–6.

    Article  CAS  Google Scholar 

  31. Li Y, Sun J, Mao W, Tang S, Liu K, Qi T, et al. Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out. Microchim Acta. 2019;186(7):403.

    Article  Google Scholar 

  32. Pal S, Bhand S. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Microchim Acta. 2015;182(9–10):1643–51.

    Article  CAS  Google Scholar 

  33. Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S. Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J Phys Chem Solids. 2009;70(6):993–9.

    Article  CAS  Google Scholar 

  34. Müller V, Rasp M, Štefanić G, Ba J, Günther S, Rathousky J, et al. Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol−gel procedure. Chem Mater. 2009;21(21):5229–36.

    Article  Google Scholar 

  35. Kuck JFR, Yu N-T, Askren CC. Total sulfhydryl by Raman spectroscopy in the intact lens of several species: variations in the nucleus and along the optical axis during aging. Exp Eye Res. 1982;34(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  36. Swain KK, Balasubramaniam R, Bhand S. A portable microfluidic device-based Fe3O4–urease nanoprobe-enhanced colorimetric sensor for the detection of heavy metals in fish tissue. Prep Biochem Biotechnol. 2020;50:1000–13.

    Article  CAS  PubMed  Google Scholar 

  37. Treviño S, Andrade-García A, Herrera Camacho I, León-Chavez BA, Aguilar-Alonso P, Flores G, et al. Chronic cadmium exposure lead to inhibition of serum and hepatic alkaline phosphatase activity in Wistar rats. J Biochem Mol Toxicol. 2015;29(12):587–94.

    Article  PubMed  Google Scholar 

  38. Du J, Hu X, Zhang G, Wu X, Gong D. Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles. Anal Lett. 2018;51(18):2906–19.

    Article  CAS  Google Scholar 

  39. Song S, Zou S, Zhu J, Liu L, Kuang H. Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food Agric Immunol. 2018;29(1):3–13.

    Article  CAS  Google Scholar 

  40. Luan Y, Lu A, Chen J, Fu H, Xu L. A label-free aptamer-based fluorescent assay for cadmium detection. Appl Sci. 2016;6(12):432.

    Article  Google Scholar 

  41. Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, et al. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta. 2020;208:1202–31.

    Article  Google Scholar 

  42. Silwana B, Van Der Horst C, Iwuoha E, Somerset V. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system. J Environ Sci Health A. 2014;49(13):1501–11.

    Article  CAS  Google Scholar 

  43. Meredith NA, Volckens J, Henry CS. Based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn (II) and Co (II). Anal Lett. 2017;9(3):534–40.

    CAS  Google Scholar 

  44. Xiao N, Dong JX, Liu SG, Li N, Fan YZ, Ju YJ, et al. Multifunctional fluorescent sensors for independent detection of multiple metal ions based on Ag nanoclusters. Sensors Actuators B Chem. 2018;264:184–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CSIF Facility of BITS Goa and Hyderabad Campuses.

Funding

Sunil Bhand acknowledges DAE-BRNS, India, for funding the project. Krishna Kumari Swain acknowledges BITS Pilani K.K. Birla Goa Campus for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Bhand.

Ethics declarations

The research was conducted as per the Indian ethical guidelines for seafood.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4.97 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, K.K., Bhand, S. A colorimetric paper-based ATONP-ALP nanobiosensor for selective detection of Cd2+ ions in clams and mussels. Anal Bioanal Chem 413, 1715–1727 (2021). https://doi.org/10.1007/s00216-020-03140-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03140-3

Keywords

Navigation