Skip to main content
Log in

Recent advances in nanomaterial-based biosensors for the detection of exosomes

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Exosomes are a type of extracellular vesicle actively secreted by almost all eukaryotic cells. They are ideal candidates for reliable next-generation biomarkers in the early diagnosis and therapeutic response evaluation of cancer. Thus, the quantification of exosomes is crucial in facilitating clinical research and application. Compared with traditional materials, nanomaterials have better optical, magnetic, electrical, and catalytic properties due to their small size, high specific surface area, and variable structure. The incorporation of nanomaterials into sensing systems is an attractive approach towards improving sensitivity and can provide improved sensor selectivity and stability. In this paper, we summarize the progress in nanomaterial-based exosome detection methods, including electrochemical biosensors, photoelectrochemical biosensors, colorimetric biosensors, fluorescence biosensors, chemiluminescence biosensors, electrochemiluminescence biosensors, surface plasmon resonance biosensors, and surface-enhanced Raman spectroscopy biosensors. Moreover, future research directions and challenges in exosome detection methods are discussed. We hope that this article will offer an overview of nanomaterial-based exosome detection techniques and open new avenues in disease research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA-Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesices. 2018;7:1535750.

    Article  Google Scholar 

  3. Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi S. Exosomes, new biomarkers in early cancer detection. Anal Biochem. 2019;571:1–13.

    Article  PubMed  CAS  Google Scholar 

  4. Trams EG, Lauter CJ, Salem JN, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. BBA-Biomembr. 1981;645:63–70.

    Article  CAS  Google Scholar 

  5. Miller IV, Grunewald TG. Tumour-derived exosomes: tiny envelops for big stories. Biol Cell. 2015;107:287–305.

    Article  PubMed  CAS  Google Scholar 

  6. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. Exocarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40:D1241–4.

    Article  PubMed  CAS  Google Scholar 

  7. Madison MN, Okeoma CM. Exosomes: implications in HIV-1 pathogenesis. Viruses. 2015;7:4093–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tang MK, Wong AS. Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett. 2015;367:26–33.

    Article  PubMed  CAS  Google Scholar 

  9. Pan J, Ding M, Xu K, Yangm C, Mao LJ. Exosomes in diagnosis and therapy of prostate cancer. Oncotarget. 2017;8:97693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Masuyk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59:612–5.

    Google Scholar 

  11. Kawikova I, Askenase PW. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. 2015;1617:63–71.

    Article  PubMed  CAS  Google Scholar 

  12. Zheng X, Chen F, Zhang J, Zhang Q, Lin J. Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol. 2014;247:1129–36.

    Article  PubMed  CAS  Google Scholar 

  13. Kowal EJK, Ter-ovanesyan D, Regev A, Church GM. Extracellular vesicle isolation and analysis by Western blotting. Methods Mol Biol. 2017;1660:143–52.

    Article  PubMed  CAS  Google Scholar 

  14. Lee J, Kim H, Heo Y, Yoo YK, Han SI, Kim C, et al. Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst. 2020;145:157–64.

    Article  CAS  Google Scholar 

  15. Brown BA, Zeng XY, Todd AR, Barnes LF, Winstone JMA, Trinidad JC, et al. Charge detection mass spectrometry measurements of exosomes and other extracellular particles enriched from bovine milk. Anal Chem. 2020;92:3285–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Dragovic RA, Gardiner C, Brooks AS. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7:780–8.

    Article  PubMed  CAS  Google Scholar 

  17. Su J, Song S. A review of the quantitative detection and diagnostic and therapeutic applications of exosomes. J Radiat Res Radiat Process. 2017;35:030101–10.

    Google Scholar 

  18. Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sarqent IL, Harrison P, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12:1182–92.

    Article  PubMed  Google Scholar 

  19. Baptista FR, Belhout SA, Giordani S, Quinn SJ. Recent developments in carbon nanomaterial sensors. Chem Soc Rev. 2015;44:4433–53.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu C, Li L, Wang Z, Irfan M, Qu F. Recent advances of aptasensors for exosomes detection. Biosens Bioelectron. 2020;160:112213.

    Article  PubMed  CAS  Google Scholar 

  21. Shao B, Xiao Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors-a review. Anal Chim Acta. 2020;1114:74–84.

    Article  PubMed  CAS  Google Scholar 

  22. Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Jamal KTA. Optical, electrochemical and electrical (nano)biosensors for the detection of exosomes: a comprehensive overview. Biosens Bioelectron. 2020;161:112222.

    Article  PubMed  CAS  Google Scholar 

  23. Fu Z, Lu Y, Lai JJ. Recent advances in biosensors for nucleic acid and exosome detection. Chonnam Med J. 2019;55:86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu H, Ye BC. Advances in biosensing technologies for analysis of cancer-derived exosomes. Trends Anal Chem. 2020;123:115773.

    Article  CAS  Google Scholar 

  25. Im H, Lee K, Weissleder R, Lee H, Castro CM. Novel nanosensing technologies for exosome detection and profiling. Lab Chip. 2017;17:2892–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, et al. Recent advances in biosensors for detection cancer-derived exosomes. Trends Biotechnol. 2019;37:1236–54.

    Article  PubMed  CAS  Google Scholar 

  27. Wei F, Yang J, Wong DTW. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens Bioelectron. 2013;44:115–21.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou Q, Rahimian A, Son K, Shin DS, Patel T, Revzin A. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2016;97:88–93.

    Article  PubMed  CAS  Google Scholar 

  29. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11:3943–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Miao P, Tang Y. Multipedal DNA walker for amplified detection of tumor exosomes. Chem Commun. 2020;56:4982–5.

    Article  CAS  Google Scholar 

  31. Zhou YG, Mohamadi RM, Poudineh M, Kermanshah L, Ahmed S, Safaei TS, et al. Interrogating circulating microsomes and exosomes using metal nanoparticles. Small. 2016;12:727–32.

    Article  PubMed  CAS  Google Scholar 

  32. Boriachek K, Islam MN, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJA. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst. 2017;142:2211–9.

    Article  PubMed  CAS  Google Scholar 

  33. Boriachek K, Umer M, Islam MN, Gopalan V, Lam AK, Nguyen NT, et al. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst. 2018;143:1662–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lim J, Choi M, Lee HJ, Han JY, Cho Y. A novel multifunctional nanowire platform for highly efficient isolation and analysis of circulating tumor-specific markers. Front Chem. 2019;6:664–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sun Z, Wang L, Wu S, Pan Y, Dong Y, Zhu S, et al. An electrochemical biosensor designed by using Zr-based metal-organic frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal Chem. 2020;92:3819–26.

  36. Sun Y, Jin H, Jiang X, Gui R. Assembly of black phosphorous nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal Chem. 2020;92:2866–75.

  37. Cao Y, Li LL, Han B, Wang Y, Dai YH, Zhao J. A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Biosens Bioelectron. 2019;141:111397–402.

    Article  PubMed  CAS  Google Scholar 

  38. Huang RR, He L, Xia YY, Xu PP, Liu C, Xie H, et al. A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small. 2019;15:1900735–40.

    Article  CAS  Google Scholar 

  39. Dong HL, Chen HF, Jiang JQ, Zhang H, Cai CX, Shen QM. Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem. 2018;90:4507–13.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J, Wang LL, Hou MF, Xia YK, He WH, Yan A, et al. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosens Bioelectron. 2018;102:33–40.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao L, Sun R, He P, Zhang X. Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease III-assisted electrochemical ratiometric biosensing. Anal Chem. 2019;91:14773–9.

    Article  PubMed  CAS  Google Scholar 

  42. Pang XH, Zhang X, Gao KK, Wan S, Cui C, Li L, et al. Visible light-driven self-powered device based on a straddling nano-he88terojunction and bio-application for the quantitation of exosomal RNA. ACS Nano. 2019;13:1817–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed. 2017;129:11916–20.

    Article  CAS  Google Scholar 

  44. Liu WL, Li JP, Wu YX, Xing S, Lai YZ, Zhang G. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron. 2018;102:204–10.

    Article  PubMed  CAS  Google Scholar 

  45. Maiolo D, Paolini L, Noto GD, Zendrini A, Berti D, Bergese P, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015;87:4168–76.

    Article  PubMed  CAS  Google Scholar 

  46. Wang XY, Hu YH, Wu H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 2016;3:41–60.

    Article  CAS  Google Scholar 

  47. Boriachek K, Masud MK, Palma C, Phan HP, Yamauchi Y, Hossain MSS, et al. Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem. 2019;91:3827–34.

    Article  PubMed  CAS  Google Scholar 

  48. Di H, Mi Z, Sun Y, Liu X, Liu X, Li A, et al. Nanozyme-assisted sensitive profiling of exosomal proteins for rapid cancer diagnosis. Theranostics. 2020;10:9303–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Oliveira-Rodriguez M. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803–12.

    Article  PubMed  CAS  Google Scholar 

  50. Oliveira-Rodríguez M, Serrano-Pertierra E, García AC, Martín SL, Mo MY, Cernuda-Morollón E, et al. Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens Bioelectron. 2017;87:38–45.

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, Li C, Shi H, Chen TS, Wang ZX, Li GX. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta. 2019;192:325–30.

    Article  PubMed  CAS  Google Scholar 

  52. Wang YM, Liu JW, Adkins GB, Shen W, Trinh MP, Duan LY, et al. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem. 2017;89:12327–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xia Y, Liu M, Wang L, Yan A, He W, Lan J, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15.

    Article  PubMed  CAS  Google Scholar 

  54. Chen J, Xu YC, Lu Y, Xing WL. Rapid isolation and visible detection of tumor-derived exosomes from plasma. Anal Chem. 2018;90:14207–15.

    Article  PubMed  CAS  Google Scholar 

  55. Chen Z, Cheng SB, Cao P, Qiu QF, Chen Y, Xie M, et al. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron. 2018;122:211–6.

    Article  PubMed  CAS  Google Scholar 

  56. Xia YK, Wang LL, Li J, Chen XQ, Lan JM, Yan A, et al. A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal Chem. 2018;90:8969–76.

    Article  PubMed  CAS  Google Scholar 

  57. Hu J, Jiang YZ, Wu LL, Wu Z, Bi Y, Wong G, et al. Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein. Anal Chem. 2017;89:13105–11.

    Article  PubMed  CAS  Google Scholar 

  58. Dong D, Zhu L, Hu J, Pang DW, Zhang ZL. Simple and rapid extracellular vesicles quantification via membrane biotinylation strategy coupled with fluorescent nanospheres-based lateral flow assay. Talanta. 2019;200:408–14.

    Article  PubMed  CAS  Google Scholar 

  59. Chen XS, Lan JM, Liu YX, Li L, Yan L, Xia YK, et al. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron. 2018;102:582–8.

    Article  PubMed  CAS  Google Scholar 

  60. Wang Y, Luo D, Fang Y, Wu W, Wang Y, Xia Y, et al. An aptasensor based on upconversion nanoparticles as LRET donors for the detection of exosomes. Sensors Actuators B. 2019;298:126900–7.

    Article  CAS  Google Scholar 

  61. Lyu Y, Cui D, Huang JG, Fan WX, Miao YS. Near-infrared afterglow semiconducting nano-polycomplexes for multiplex differentiation of cancer exosomes. Angew Chem Int Ed. 2019;58:4983–7.

    Article  CAS  Google Scholar 

  62. Zhai YZ, Li MX, Pan WL, Chen Y, Li MM, Pang JX, et al. In situ detection of plasma exosomal MicroRNA-1246 for breast cancer diagnostics by a Au nanoflare probe. ACS Appl Mater Interfaces. 2018;104:39478–86.

    Article  CAS  Google Scholar 

  63. Zheng J, Li NX, Li CR, Wang XX, Liu YC, Mao GB, et al. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron. 2018;107:40–6.

    Article  PubMed  CAS  Google Scholar 

  64. Gao ML, He F, Yin BC, Ye BC. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst. 2019;144:1995–2002.

    Article  PubMed  CAS  Google Scholar 

  65. Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale. 2018;10:20289–95.

    Article  PubMed  CAS  Google Scholar 

  66. Gao M, Yin B, Ye B. Construction of a DNA-AuNP-based satellite network for exosome analysis. Analyst. 2019;144:5996–6003.

    Article  PubMed  CAS  Google Scholar 

  67. Wang H, Chen H, Huang ZP, Li TD, Deng AM, Kong JL. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–26.

    Article  PubMed  CAS  Google Scholar 

  68. Zhou J, Meng LC, Ye WR, Wang QL, Geng SZ, Sun C. A sensitive detection assay based on signal amplification technology for Alzheimer's disease's early biomarker in exosome. Anal Chim Acta. 2018;1022:124–30.

    Article  PubMed  CAS  Google Scholar 

  69. Jin D, Yang F, Zhang Y, Liu L, Zhou Y, Wang F, et al. ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal Chem. 2018;90:14402–11.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16:3033–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang QX, Wang F, Zhang HX, Zhang YY, Liu ML, Liu Y. Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem. 2018;90:12737–44.

    Article  PubMed  CAS  Google Scholar 

  72. Chen H, Luo D, Shang B, Cao J, Wei J, Chen Q, et al. Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination. Microchim Acta. 2020;187:282–9.

    Article  CAS  Google Scholar 

  73. Shi L, Ba L, Xiong Y, Peng G. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Microchim Acta. 2019;186:796–800.

    Article  CAS  Google Scholar 

  74. He F, Wang J, Ye BC. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem. 2018;90:8072–9.

    Article  PubMed  CAS  Google Scholar 

  75. Wang L, Yang YC, Liu YF, Ning LM, Xiang Y, Li GX. Bridging exosome and liposome through zirconium–phosphate coordination chemistry: a new method for exosome detection. Chem Commun. 2019;55:2708–11.

    Article  CAS  Google Scholar 

  76. He DG, Ho SL, Chan HN, Wang HZ, Hai L, He XX, et al. Molecular recognition-based DNA nanodevices to enhance the direct visualization and quantification of single- vesicles of tumor exosomes in plasma microsamples. Anal Chem. 2019;91:2478–775.

    Google Scholar 

  77. Wang YY, Liu ZP, Wang XC, Dai YB, Li XY, Gao SF, et al. Rapid and quantitative analysis of exosomes by a chemiluminescence immunoassay using superparamagnetic iron oxide particles. J Biomed Nanotechnol. 2019;15:1792–800.

    Article  PubMed  CAS  Google Scholar 

  78. Jiang Q, Liu Y, Wang L, Adkins GB, Zhong W. Rapid enrichment and detection of extracellular vesicles enabled by CuS-enclosed microgels. Anal Chem. 2019;91:15951–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang HX, Wang ZH, Zhang QX, Wang F, Liu Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron. 2019;124-125:184–90.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem. 2020;92:5546–53.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, Wang F, Zhang H, Wang H, Liu Y. Multivalency interface and g-C3N4 coated liquid metal nanoprobe signal amplification for sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem. 2019;91:12100–7.

    Article  PubMed  CAS  Google Scholar 

  82. Feng Q, Ma P, Cao Q, Guo Y, Xu J. An aptamer-binding DNA walking machine for sensitive electrochemiluminescence detection of tumor exosomes. Chem Commun. 2020;56:269–72.

    Article  CAS  Google Scholar 

  83. Qiao B, Guo Q, Jiang J, Qi Y, Zhang H, He B, et al. An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst. 2019;144:3668–75.

    Article  PubMed  CAS  Google Scholar 

  84. Fang D, Zhao D, Zhang S, Huang Y, Dai H, Lin Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sensors Actuators B Chem. 2020;305:127544–51.

    Article  CAS  Google Scholar 

  85. Im H, Shao H, Yong IP, Vanessa MP, Cesar MC, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Duraichelvana R, Srinivasa B, Badilescua S, Ouelletteb R, Ghoshb A, Packirisamya M. Exosomes detection by a label-free localized surface plasmonic resonance method. ECS Trans. 2016;75:11–7.

    Article  CAS  Google Scholar 

  87. Giuseppe DN, Bugatti A, Zendrini A, Mazzoldi EL, Montanelli A, Caimi L, et al. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens Bioelectron. 2016;77:518–24.

    Article  CAS  Google Scholar 

  88. Park J, Im H, Hong S, Castro CM, Weissleder R, Lee H. Analyses of intravesicular exosomal proteins using a nano-plasmonic system. ACS Photonics. 2018;52:487–94.

    Article  CAS  Google Scholar 

  89. Thakur A, Qiu G, Ng SP, Guan J, Lee Y, Wu CL. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron. 2017;94:400–7.

    Article  PubMed  CAS  Google Scholar 

  90. Wang Q, Zou LY, Yang XH, Liu XF, Nie WY, Zheng Y, et al. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron. 2019;135:129–36.

    Article  PubMed  CAS  Google Scholar 

  91. Fan Y, Duan X, Zhao M, Wei X, Wu J, Chen W, et al. High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosens Bioelectron. 2020;154:112066–72.

    Article  PubMed  CAS  Google Scholar 

  92. Qiu G, Thakur A, Xu C, Ng S, Lee Y, Wu CML. Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv Funct Mater. 2019;29:1806761.

    Article  CAS  Google Scholar 

  93. Reiner AT, Ferrer NG, Venugopalan P, Lai RC, Lim SK, Dostalek J. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis. Analyst. 2017;142:3913–21.

    Article  PubMed  CAS  Google Scholar 

  94. Stremersch S, Marro M, Pinchasik BE, Baatsen P, Hendrix A, Smedt SCD, et al. Identification of individual exosome-like vesicles by surface enhanced Raman spectroscopy. Small. 2016;24:3292–301.

    Article  CAS  Google Scholar 

  95. Park J, Hwang M, Choi B, Jeong H, Jung J, Kim HK, et al. Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal Chem. 2017;89:6695–701.

    Article  PubMed  CAS  Google Scholar 

  96. Lee C, Carney R, Hazari S, Smith Z. 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale. 2015;7:9290–7.

    Article  PubMed  CAS  Google Scholar 

  97. Lee C, Carney R, Lam K, Chan JW. SERS analysis of selectively captured exosomes using an integrin-specific peptide ligand. J Raman Spectrosc. 2017;48:1771–6.

    Article  CAS  Google Scholar 

  98. Kwizera EA, O’Connor R, Vinduska V, Williams M, Butch ER, Scott ES, et al. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics. 2018;8:2722–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ertsgaard C, Wittenberg NJ, Klemme DJ, Barik A, Shih WC, Oh SH. Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett. 2018;18:5946–53.

    Article  PubMed  CAS  Google Scholar 

  100. Lee JU, Kim WH, Lee HS, Park KH, Sim SJ. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small. 2019;15(2019):e1804968 1–10.

    Article  PubMed  CAS  Google Scholar 

  101. Wang ZL, Zong SF, Wang YJ, Li N, Li L, Lu J, et al. Screening and multiple detection of cancerous exosomes using a SERS-based method. Nanoscale. 2018;10:9053–62.

    Article  PubMed  CAS  Google Scholar 

  102. Zong S, Wang L, Chen C, Lu J, Zhu D, Zhang Y, et al. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods. 2016;8:5001–8.

    Article  CAS  Google Scholar 

  103. Ma DD, Huang CX, Zheng J, Tang JR, Li JS, Yang JF, et al. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens Bioelectron. 2018;101:167–73.

    Article  PubMed  CAS  Google Scholar 

  104. Pang YF, Wang CG, Lu LC, Wang CW, Sun ZW, Xiao R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron. 2019;130:204–13.

    Article  PubMed  CAS  Google Scholar 

  105. Li TD, Zhang R, Chen H, Huang ZP, Ye X, Wang H, et al. An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem Sci. 2018;9:5372–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Fraire JC, Stremersch S, Bouckaert D, Monteyne T, Beer TD, Wuytens P, et al. Improved label-free identification of individual exosome-like, vesicles with Au@Ag nanoparticles as SERS substrate. ACS Appl Mater Interfaces. 2019;11:39424–35.

    Article  PubMed  CAS  Google Scholar 

  107. Pang Y, Shi J, Yang X, Wang C, Sun Z, Xiao R. Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens Bioelectron. 2020;148:111800.

    Article  PubMed  CAS  Google Scholar 

  108. Tian YF, Ning CF, He F, Yin BC, Ye BC. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst. 2018;20:1–84915–22.

    Google Scholar 

  109. Liu HY, Weng LY, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta. 2017;184:1–17.

    Article  CAS  Google Scholar 

  110. Li J, Sculley J, Zhou H. Metal-organic frameworks for separations. Chem Rev. 2012;112:869–932.

    Article  PubMed  CAS  Google Scholar 

  111. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444–50.

    Article  PubMed  CAS  Google Scholar 

  112. Yang J, Trickett CA, Alahmadi SB, Alshammari AS, Yaghi OM. Calcium L-lactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc. 2017;139:8118–21.

    Article  PubMed  CAS  Google Scholar 

  113. Xiang W, Lv Q, Shi H, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716.

    Article  PubMed  CAS  Google Scholar 

  114. Casal E, Pfaller T, Duschl A, Oostinqh GJ, Puntes V. Time evolution of the nanoparticles protein corona. ACS Nano. 2010;47:3623–32.

    Article  CAS  Google Scholar 

  115. Wang D, Lin K, Huang C. Carbon dots-involved chemiluminescence: recent advances and developments. Luminescence 2019;34:4–22.

  116. Roda A, Mirasoli M, Michelini E, Fusco MD, Zangheri M, Gevenini L, et al. Process in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron. 2016;76:164–79.

    Article  PubMed  CAS  Google Scholar 

  117. Tiwari A, Dhoble SJJT. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta. 2018;180:1–11.

    Article  PubMed  CAS  Google Scholar 

  118. Song H, Su Y, Zhang L, Lv Y. Quantum dots-based chemiluminescence probes: an overview. Luminescence 2019;34:530–43.

  119. Sina AAI, Vaidyanathan R, Wuethrich A, Arrascosa LGC, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem. 2019;411:1311–8.

    Article  PubMed  CAS  Google Scholar 

  120. Zhang R, Zhang Y, Dong ZC, Jiang S, Chen LG, Zhang L, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 2013;498:82–6.

    Article  PubMed  CAS  Google Scholar 

  121. Gellner M, Schütz M, Salehi M, Pacheisen J, Strobel P, Marx A, et al. SERS microscopy: plasmonic nanoparticle probes and biomedical applications. Proc SPIE. 2010;7757:77570M.

    Article  CAS  Google Scholar 

  122. Seballos L, Zhang JZ, Sutphen R. Surface-enhanced Raman scattering detection of lysophosphatidic acid. Anal Bioanal Chem. 2015;383:763–7.

    Article  CAS  Google Scholar 

  123. Huefner A, Kuan WL, Barker RA, Mahajan S. Intracellular SERS nanoprobes for distinction of different neuronal cell types. Nano Lett. 2013;13:2463–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Premasiri WR, Lee JC, Sauer-Budge A, Theberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408:4631–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yoon SS, Lee W, Byun JH, Lee JU. Preparation of graphene/gold nano-hybrid using diamine linker as effective surface-enhanced Raman scattering platforms. J Nanosci Nanotechnol. 2015;15:8996–9001.

    Article  PubMed  CAS  Google Scholar 

  126. Etayash H, McGee AR, Kaur K, Thundat T. Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. Nanoscale. 2016;8:15137–41.

    Article  PubMed  CAS  Google Scholar 

  127. Cheng N, Song Y, Shi Q, Du D, Liu D, Luo Y, et al. Au@Pd Nanopopcorn and aptamer nanoflower assisted lateral flow strip for thermal detection of exosomes. Anal Chem. 2019;91:13986–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was financed by NSFC (21405029, 617310008, 51775154), the Science and Technology Program of Zhejiang Province of China (LGF18H200005, LGF18H180005, LGC20H200001), and the Medical and Health Technology Development Program of Zhejiang province (2020KY727).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongying Liu or Lihua Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gu, C., Wen, J. et al. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 413, 83–102 (2021). https://doi.org/10.1007/s00216-020-03000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03000-0

Keywords

Navigation