Skip to main content

Advertisement

Log in

2D materials in electrochemical sensors for in vitro or in vivo use

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Individual cells and cell populations are at the present time investigated with a myriad of analytical tools. While most of them are commercially available, some of these analytical tools are just emerging from research laboratories and are in the developmental phase. Electrochemical sensors which allow the monitoring of low molecular weight compounds released (and / or uptaken) by cells are among these emerging tools. Such sensors are increasingly built using 2D materials (e.g. graphene-based materials, transition metal dichalcogenides, etc.) with the aim of conferring better analytical performances to these devices. The present work critically reviews studies published during the last 10 years describing electrochemical sensors made with 2D materials and exploited to monitor small compounds (e.g. H2O2, ·NO, glucose, etc.) in living biological systems. It also discusses the very few 2D material-based electrochemical sensors which are wearable or usable in vivo. Finally, the present work includes a specific section about 2D material biocompatibility, a fundamental requirement for 2D material-based sensor applications in vitro and in vivo. As such, the review provides a critical view on the state of the art of electrochemical sensors made with 2D materials and used at cellular level and it evaluates the possibility that such sensors will be used on / in the human body on a wider scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bucher ES, Wightman RM. Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem. 2015;8:239–61.

    CAS  Google Scholar 

  2. Lulevich V, Shih Y-P, Lo SH, Liu G. Cell tracing dyes significantly change single cell mechanics. J Phys Chem B. 2009;113(18):6511–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu K, Liu Y-L, Oleinick A, Mirkin MV, Huang W-H, Amatore C. Nanoelectrodes for intracellular measurements of reactive oxygen and nitrogen species in single living cells. Curr Opin Electrochem. 2020;22:44–50.

    CAS  Google Scholar 

  4. Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42:5425–38.

    CAS  PubMed  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

  6. Wu S, He Q, Tan C, Wang Y, Zhang H. Graphene-based electrochemical sensors. Small. 2013;9(8):1160–72.

    CAS  PubMed  Google Scholar 

  7. Yin PT, Kim T-H, Choi J-W, Lee K-B. Prospects for graphene–nanoparticle-based hybrid sensors. Phys Chem Chem Phys. 2013;15:12785–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu C, Dong S. Energetic graphene-based electrochemical analytical devices in nucleic acid, protein and cancer diagnostics and detection. Electroanalysis. 2014;26(1):14–29.

    Google Scholar 

  9. Zhu C, Du D, Lin Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron. 2017;89:43–55.

    CAS  PubMed  Google Scholar 

  10. Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478–598.

    CAS  PubMed  Google Scholar 

  11. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, et al. Recent advances in MXene–based electrochemical sensors and biosensors. TrAC Trends Anal Chem. 2019;120:115643.

  12. Mazánek V, Luxa J, Matějková S, Kučera J, Sedmidubský D, Pumera M, et al. Ultrapure graphene is a poor electrocatalyst: definitive proof of the key role of metallic impurities in graphene-based electrocatalysis. ACS Nano. 2019;13(2):1574–82.

  13. Zhang T, Gu Y, Li C, Yan X, Lu N, Liu H, et al. Fabrication of novel electrochemical biosensor based on graphene nanohybrid to detect H2O2 released from living cells with ultrahigh performance. ACS Appl Mater Interfaces. 2017;9(43):37991–9.

  14. Yang G-H, Zhou Y-H, Wu J-J, Cao J-T, Li L-L, Liu H-Y, et al. Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv. 2013;3(44):22597–604.

  15. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater. 2012;22(12):2487–94.

    CAS  Google Scholar 

  16. Li X-R, Kong F-Y, Liu J, Liang T-M, Xu J-J, Chen H-Y. Synthesis of potassium-modified graphene and its application in nitrite-selective sensing. Adv Funct Mater. 2012;22(9):1981–8.

    CAS  Google Scholar 

  17. Bai J, Jiang X. A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal Chem. 2013;85(17):8095–101.

    CAS  PubMed  Google Scholar 

  18. Xi F, Zhao D, Wang X, Chen P. Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem Commun. 2013;26:81–4.

    CAS  Google Scholar 

  19. Ting SL, Guo CX, Leong KC, Kim D-H, Li CM, Chen P. Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochim Acta. 2013;111:441–6.

    CAS  Google Scholar 

  20. Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H. Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem. 2014;86(19):9459–65.

  21. Fang H, Pan Y, Shan W, Guo M, Nie Z, Huang Y, et al. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4 /self-reduced graphene nanocomposites. Anal Methods. 2014;6:6073–81.

  22. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces. 2014;6(16):13648–56.

    CAS  PubMed  Google Scholar 

  23. Hu FX, Xie JL, Bao SJ, Yu L, Li CM. Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosens Bioelectron. 2015;70:310–7.

    CAS  PubMed  Google Scholar 

  24. Li J, Xie J, Gao L, Li CM. Au nanoparticles–3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide. ACS Appl Mater Interfaces. 2015;7(4):2726–34.

    CAS  PubMed  Google Scholar 

  25. Liu J, Bo X, Zhao Z, Guo L. Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens Bioelectron. 2015;74:71–7.

    CAS  PubMed  Google Scholar 

  26. Liu Y-L, Wang X-Y, Xu J-Q, Xiao C, Liu Y-H, Zhang X-W, et al. Functionalized graphene-based biomimetic microsensor interfacing with living cells to sensitively monitor nitric oxide release. Chem Sci. 2015;6:1853–8.

  27. Sun Y, He K, Zhang Z, Zhou A, Duan H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens Bioelectron. 2015;68:358–64.

    CAS  PubMed  Google Scholar 

  28. Yu G, Wu W, Pan X, Zhao Q, Wei X, Lu Q. High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets. Sensors. 2015;15(2):2709–22.

  29. Wang L, Zhang Y, Cheng C, Liu X, Jiang H, Wang X. Highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with Au, Fe3O4 and Pt nanoparticles. ACS Appl Mater Interfaces. 2015;7(33):18441–9.

  30. Abdurhman AAM, Zhang Y, Zhang G, Wang S. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Anal Bioanal Chem. 2015;407:8129–36.

    CAS  PubMed  Google Scholar 

  31. Yu C, Wang L, Li W, Zhu C, Bao N, Gu H. Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated graphene oxide. Sensors Actuators B Chem. 2015;211:17–24.

  32. Liu Z, Forsyth H, Khaper N, Chen A. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites. Analyst. 2016;141(13):4074–83.

    CAS  PubMed  Google Scholar 

  33. Bai Z, Li G, Liang J, Su J, Zhang Y, Chen H, et al. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens Bioelectron. 2016;82:185–94.

  34. Li C, Liu X, Zhang Y, Chen Y, Du T, Jiang H, et al. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with CuI. Anal Chim Acta. 2016;933:66–74.

  35. Suhag D, Sharma AK, Patni P, Garg SK, Rajput SK, Chakrabarti S, et al. Hydrothermally functionalized biocompatible nitrogen doped graphene nanosheet based biomimetic platforms for nitric oxide detection. J Mater Chem B. 2016;4(27):4780–9.

  36. Zhang D, Ouyang X, Li L, Dai B, Zhang Y. Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites. J Electroanal Chem. 2016;780:60–7.

    CAS  Google Scholar 

  37. Zhang Y, Xiao J, Lv Q, Wang L, Dong X, Asif M, et al. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework. ACS Appl Mater Interfaces. 2017;9(44):38201–10.

  38. Tian Y, Wei Z, Zhang K, Peng S, Zhang X, Liu W, et al. Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing. Sensors Actuators B Chem. 2017;241:584–91.

  39. Liu Y, Liu X, Guo Z, Hu Z, Xue Z, Lu X. Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens Bioelectron. 2017;87:101–7.

    CAS  PubMed  Google Scholar 

  40. Sun Y, Luo M, Meng X, Xiang J, Wang L, Ren Q, et al. Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H2O2 released from cells. Anal Chem. 2017;89(6):3761–7.

  41. Sun Y, Luo M, Qin Y, Zhu S, Li Y, Xu N, et al. Atomic-thick PtNi nanowires assembled on graphene for high-sensitivity extracellular hydrogen peroxide sensors. ACS Appl Mater Interfaces. 2017;9(40):34715–21.

  42. Zhao Y, Huo D, Bao J, Yang M, Chen M, Hou J, et al. Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells. Sensors Actuators B Chem. 2017;244:1037–44.

  43. Fu Y, Huang D, Li C, Zou L, Ye B. Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells. Anal Chim Acta. 2018;1014:10–8.

    CAS  PubMed  Google Scholar 

  44. Wang Y, Wang M-Q, Lei L-L, Chen Z-Y, Liu Y-S, Bao S-J. FePO4 embedded in nanofibers consisting of amorphous carbon and reduced graphene oxide as an enzyme mimetic for monitoring superoxide anions released by living cells. Microchim Acta. 2018;185:140.

    Google Scholar 

  45. Xu H, Liao C, Liu Y, Ye B-C, Liu B. Iron phthalocyanine decorated nitrogen-doped graphene biosensing platform for real-time detection of nitric oxide released from living cells. Anal Chem. 2018;90(7):4438–44.

    CAS  PubMed  Google Scholar 

  46. Dong W, Ren Y, Bai Z, Yang Y, Wang Z, Zhang C, et al. Trimetallic AuPtPd nanocomposites platform on graphene: applied to electrochemical detection and breast cancer diagnosis. Talanta. 2018;189:79–85.

  47. Munteanu R-E, Stǎnicǎ L, Gheorghiu M, Gáspár S. Measurement of the extracellular pH of adherently growing mammalian cells with high spatial resolution using a voltammetric pH microsensor. Anal Chem. 2018;90(11):6899–905.

    CAS  PubMed  Google Scholar 

  48. Liu Y, Shang T, Liu Y, Liu X, Xue Z, Liu X. Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress. Sensors Actuators B Chem. 2018;263:543–9.

    CAS  Google Scholar 

  49. Dou B, Li J, Jiang B, Yuan R, Xiang Y. DNA-templated in situ synthesis of highly dispersed AuNPs on nitrogen-doped graphene for real-time electrochemical monitoring of nitric oxide released from live cancer cells. Anal Chem. 2019;91(3):2273–8.

    CAS  PubMed  Google Scholar 

  50. Bai W-S, Zhang X-J, Zheng J-B. Direct growth of ordered PdCu and Co doped PdCu nanoparticles on graphene oxide based on a one-step hydrothermal method for ultrasensitive sensing of H2O2 in living cells. Analyst. 2019;144(1):157–60.

  51. Dong W, Ren Y, Bai Z, Yang Y, Chen Q. Fabrication of hexahedral Au-Pd/graphene nanocomposites biosensor and its application in cancer cell H2O2 detection. Bioelectrochemistry. 2019;128:274–82.

  52. Wang W, Tang H, Wu Y, Zhang Y, Li Z. Highly electrocatalytic biosensor based on hemin@AuNPs/reduced graphene oxide/chitosan nanohybrids for non-enzymatic ultrasensitive detection of hydrogen peroxide in living cells. Biosens Bioelectron. 2019;132:217–23.

    CAS  PubMed  Google Scholar 

  53. Li Y-T, Jin X, Tang L, Lv W-L, Xiao M-M, Zhang Z-Y, et al. Receptor-mediated field effect transistor biosensor for real-time monitoring of glutamate release from primary hippocampal neurons. Anal Chem. 2019;91(13):8229–36.

  54. Qi H, Song J, Fu Y, Wu X, Qi H. Highly dispersive Pt–Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H2O2 released from living cells. Nanotechnology. 2020;31(13):135503.

    CAS  PubMed  Google Scholar 

  55. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

    CAS  PubMed  Google Scholar 

  56. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655–73.

    CAS  PubMed  Google Scholar 

  57. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):341–53.

    PubMed  Google Scholar 

  59. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91(3A):7A–11A.

    CAS  PubMed  Google Scholar 

  60. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004;44:239–67.

    CAS  PubMed  Google Scholar 

  61. Butler AR, Williams DLH. The physiological role of nitric oxide. Chem Soc Rev. 1993;22(4):233–41.

    CAS  Google Scholar 

  62. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34.

    CAS  PubMed  Google Scholar 

  63. Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity. Arthritis Rheum. 1998;41(7):1141–51.

    CAS  PubMed  Google Scholar 

  64. Kong X-K, Chen C-L, Chen Q-W. Doped graphene for metal-free catalysis. Chem Soc Rev. 2014;43(8):2841–57.

    CAS  PubMed  Google Scholar 

  65. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21(2):92–103.

  67. Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics. 2015;16(3):273–85.

  68. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4:12.

  69. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505–27.

  70. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide – production, fate and role in redox signaling of tumor cells. Cell Commun Signal CCS. 2015;13:39.

    PubMed  Google Scholar 

  71. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, et al. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem. 2013;85(21):10289–95.

  72. Tang J, Quan Y, Zhang Y, Jiang M, Al-Enizi AM, Kong B, et al. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling. Nanoscale. 2016;8(10):5786–92.

  73. Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J. PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron. 2016;80:601–6.

    CAS  PubMed  Google Scholar 

  74. Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, et al. MoS2 nanosheet-Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B. 2017;5(7):1446–53.

  75. Shu Y, Xu J, Chen J, Xu Q, Xiao X, Jin D, et al. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sensors Actuators B Chem. 2017;252:72–8.

  76. Zhou J-X, Tang L-N, Yang F, Liang F-X, Wang H, Li Y-T, et al. MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst. 2017;142(22):4322–9.

  77. Dou B, Yang J, Yuan R, Xiang Y. Trimetallic hybrid nanoflower-decorated MoS2 nanosheet sensor for direct in situ monitoring of H2O2 secreted from live cancer cells. Anal Chem. 2018;90(9):5945–50.

    CAS  PubMed  Google Scholar 

  78. Dai H, Chen D, Cao P, Li Y, Wang N, Sun S, et al. Molybdenum sulfide/nitrogen-doped carbon nanowire-based electrochemical sensor for hydrogen peroxide in living cells. Sensors Actuators B Chem. 2018;276:65–71.

  79. Du H, Zhang X, Liu Z, Qu F. A supersensitive biosensor based on MoS2 nanosheet arrays for the real-time detection of H2O2 secreted from living cells. Chem Commun. 2019;55(65):9653–6.

    CAS  Google Scholar 

  80. Mani V, Shanthi S, Peng T-K, Lin H-Y, Ikeda H, Hayakawa Y, et al. Real-time quantification of hydrogen peroxide production in living cells using NiCo2S4@CoS2 heterostructure. Sensors Actuators B Chem. 2019;287:124–30.

  81. Zheng J, Wang B, Jin Y, Weng B, Chen J. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim Acta. 2019;186:95.

    Google Scholar 

  82. Lu J, Hu Y, Wang P, Liu P, Chen Z, Sun D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensors Actuators B Chem. 2020;311:127909.

    CAS  Google Scholar 

  83. Shu Y, Zhang W, Yin X, Zhang L, Yang Y, Ma D, et al. Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers. J Colloid Interface Sci. 2020;566:248–56.

  84. Shu Y, Zhang L, Cai H, Yang Y, Zeng J, Ma D, et al. Hierarchical Mo2C@MoS2 nanorods as electrochemical sensors for highly sensitive detection of hydrogen peroxide and cancer cells. Sensors Actuators B Chem. 2020;311:127863.

  85. Vilian ATE, Dinesh B, Kang S-M, Krishnan UM, Huh YS, Han Y-K. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Microchim Acta. 2019;186:203.

    Google Scholar 

  86. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat Commun. 2012;3:763.

  87. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol. 2016;11:566–72.

  88. Kim J, Kim M, Lee M-S, Kim K, Ji S, Kim Y-T, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun. 2017;8:14997.

  89. Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3:e1601314.

  90. Lipani L, Dupont BGR, Doungmene F, Marken F, Tyrrell RM, Guy RH, et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol. 2018;13:504–11.

  91. Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. 2018;4:eaap9841.

  92. Xuan X, Yoon HS, Park JY. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron. 2018;109:75–82.

    CAS  PubMed  Google Scholar 

  93. Jin Q, Chen H-J, Li X, Huang X, Wu Q, He G, et al. Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small. 2019;15(6):1804298.

  94. Toi PT, Trung TQ, Dang TML, Bae CW, Lee N-E. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl Mater Interfaces. 2019;11(11):10707–17.

    CAS  PubMed  Google Scholar 

  95. Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28(5):1231–9.

    PubMed  Google Scholar 

  96. Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron. 2017;89:400–10.

  97. Pu Z, Tu J, Han R, Zhang X, Wu J, Fang C, et al. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab Chip. 2018;18(23):3570–7.

  98. Zhang B, Li C, Zhang H, Chen Y, Jiang H, Chen L, et al. In Vivo dopamine biosensor based on copper(I) sulfide functionalized reduced graphene oxide decorated microelectrodes. J Biomed Nanotechnol. 2018;14(7):1277–86.

  99. Zhou J-X, Ding F, Tang L-N, Li T, Li Y-H, Zhang Y-J, et al. Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst. 2018;143(18):4469–75.

  100. Zhu M, Zeng C, Ye J, Sun Y. Simultaneous in vivo voltammetric determination of dopamine and 5-hydroxytryptamine in the mouse brain. Appl Surf Sci. 2018;455:646–52.

  101. Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol. 2005;37(5):942–6.

    CAS  PubMed  Google Scholar 

  102. Gonon F, Cespuglio R, Ponchon JL, Buda M, Jouvet M, Adams RN, et al. In vivo continuous electrochemical determination of dopamine release in rat neostriatum. C R Hebd Seances Acad Sci Ser Sci Nat. 1978;286(16):1203–6.

  103. Bullock CJ, Bussy C. Biocompatibility considerations in the design of graphene biomedical materials. Adv Mater Interfaces. 2019;6:1900229.

    Google Scholar 

  104. Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, et al. Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano. 2018;12(11):10582–620.

  105. Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun. 2019;55(39):5540–6.

    Google Scholar 

  106. Wang S, Yang X, Zhou L, Li J, Chen H. 2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. J Mater Chem B. 2020;8(15):2974–89.

    CAS  PubMed  Google Scholar 

  107. Reina G, Gonzalez-Dominguez JM, Criado A, Vazquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400–16.

    CAS  PubMed  Google Scholar 

  108. Bianco A. Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl. 2013;52(19):4986–97.

    CAS  PubMed  Google Scholar 

  109. Wick P, Louw-Gaume AE, Kucki M, Krug HF, Kostarelos K, Fadeel B, et al. Classification framework for graphene-based materials. Angew Chem Int Ed Engl. 2014;53(30):7714–8.

  110. Ou L, Song B, Liang H, Liu J, Feng X, Deng B, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13:57.

  111. Kenry LCT. Biocompatibility and nanotoxicity of layered two-dimensional nanomaterials. ChemNanoMat. 2017;3(1):5–16.

    CAS  Google Scholar 

  112. Mukherjee SP, Lozano N, Kucki M, Del Rio-Castillo AE, Newman L, Vazquez E, et al. Detection of endotoxin contamination of graphene based materials using the TNF-α expression test and guidelines for endotoxin-free graphene oxide production. PLoS One. 2016;11:e0166816.

  113. Vranic S, Rodrigues AF, Buggio M, Newman L, White MRH, Spiller DG, et al. Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses. ACS Nano. 2018;12(2):1373–89.

  114. Castagnola V, Zhao W, Boselli L, Lo Giudice MC, Meder F, Polo E, et al. Biological recognition of graphene nanoflakes. Nat Commun. 2018;9:1577.

  115. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105(PartB):255–74.

  116. Vale FM, Castro M, Monteiro J, Couto FS, Pinto R, Rico JMGT. Acrylic bone cement induces the production of free radicals by cultured human fibroblasts. Biomaterials. 1997;18(16):1133–5.

    CAS  PubMed  Google Scholar 

  117. Yang SY, Oh JG, Jung DY, Choi HK, Yu CH, Shin J, et al. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small. 2015;11:175–81.

  118. Hussain SM, Frazier JM. Cellular toxicity of hydrazine in primary rat hepatocytes. Toxicol Sci. 2002;69(2):424–32.

    CAS  PubMed  Google Scholar 

  119. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via L-ascorbic acid. Chem Commun. 2010;46(7):1112–4.

    CAS  Google Scholar 

  120. Evariste L, Lagier L, Gonzalez P, Mottier A, Mouchet F, Cadarsi S, et al. Thermal reduction of graphene oxide mitigates its in vivo genotoxicity toward xenopus laevis tadpoles. Nanomaterials. 2019;9(4):584.

  121. Toh SY, Loh KS, Kamarudin SK, Daud WRW. Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J. 2014;251:422–34.

    CAS  Google Scholar 

  122. Lisi N, Dikonimos T, Buonocore F, Pittori M, Mazzaro R, Rizzoli R, et al. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci Rep. 2017;7:9927.

  123. González VJ, Rodríguez AM, León V, Frontiñán-Rubio J, Fierro JLG, Durán-Prado M, et al. Sweet graphene: exfoliation of graphite and preparation of glucose-graphene cocrystals through mechanochemical treatments. Green Chem. 2018;20(15):3581–92.

  124. Chatterjee N, Eom HJ, Choi J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials. 2014;35(4):1109–27.

    CAS  PubMed  Google Scholar 

  125. Masvidal-Codina E, Illa X, Dasilva M, Calia AB, Dragojević T, Vidal-Rosas EE, et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat Mater. 2019;18(3):280–8.

  126. Drasler B, Kucki M, Delhaes F, Buerki-Thurnherr T, Vanhecke D, Korejwo D, et al. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 2018;137:125–35.

  127. Guarnieri D, Sánchez-Moreno P, Del Rio Castillo AE, Bonaccorso F, Gatto F, Bardi G, et al. Biotransformation and biological interaction of graphene and graphene oxide during simulated oral ingestion. Small. 2018;14(24):e1800227.

  128. Sasidharan A, Panchakarla LS, Sadanandan AR, Ashokan A, Chandran P, Girish CM, et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small. 2012;8(8):1251–63.

  129. Liu JH, Yang ST, Wang H, Chang Y, Cao A, Liu Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomed. 2012;7(12):1801–12.

    CAS  Google Scholar 

  130. Zhang X, Wei C, Li Y, Li Y, Chen G, He Y, et al. Dose-dependent cytotoxicity induced by pristine graphene oxide nanosheets for potential bone tissue regeneration. J Biomed Mater Res A. 2020;108(3):614–24.

  131. Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, et al. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B. 2013;1(3):265–75.

  132. Pinto AM, Moreira JA, Magalhães FD. Gonçalves IC; Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids Surf B Biointerfaces. 2016;146:818–24.

  133. Sasidharan A, Swaroop S, Koduri CK, Girish CM, Chandran P, Panchakarla LS, et al. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study. Carbon. 2015;95:511–24.

  134. Jasim DA, Murphy S, Newman L, Mironov A, Prestat E, McCaffrey J, et al. The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano. 2016;10(12):10753–67.

  135. Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016;10(3):3267–81.

  136. Russier J, Treossi E, Scarsi A, Perrozzi F, Dumortier H, Ottaviano L, et al. Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale. 2013;5(22):11234–47.

  137. Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials. 2012;33(16):4013–21.

  138. Cicuéndez M, Fernandes M, Ayán-Varela M, Oliveira H, Feito MJ, Diez-Orejas R, et al. Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization. Colloids Surf B Biointerfaces. 2020;186:110709.

  139. Mukherjee SP, Kostarelos K, Fadeel B. Cytokine profiling of primary human macrophages exposed to endotoxin-free graphene oxide: size-independent NLRP3 inflammasome activation. Adv Healthc Mater. 2018;7(4):1700815.

    Google Scholar 

  140. Svadlakova T, Hubatka F, Knotigova PT, Kulich P, Masek J, Kotoucek J, et al. Proinflammatory effect of carbon-based nanomaterials: in vitro study on stimulation of inflammasome NLRP3 via destabilisation of lysosomes. Nanomaterials. 2020;10(3):418.

  141. Luo N, Ni D, Yue H, Wei W, Ma G. Surface-engineered graphene navigate divergent biological outcomes toward macrophages. ACS Appl Mater Interfaces. 2015;7(9):5239–47.

    CAS  PubMed  Google Scholar 

  142. Luo N, Weber JK, Wang S, Luan B, Yue H, Xi X, et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat Commun. 2017;8:14537.

  143. Mukherjee SP, Lazzaretto B, Hultenby K, Newman L, Rodrigues AF, Lozano N, et al. Graphene oxide elicits membrane lipid changes and neutrophil extracellular trap formation. Chemistry. 2018;4(2):334–58.

  144. Liao KH, Lin YS, MacOsko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011;3(7):2607–15.

    CAS  PubMed  Google Scholar 

  145. Pelin M, Fusco L, Martín C, Sosa S, Frontiñán-Rubio J, González-Domínguez JM, et al. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale. 2018;10(25):11820–30.

  146. Fusco L, Pelin M, Mukherjee S, Keshavan S, Sosa S, Martín C, et al. Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: implications for cutaneous applications. Carbon. 2020;159:598–610.

  147. Erf GF, Falcon DM, Sullivan KS, Bourdo SE. T lymphocytes dominate local leukocyte infiltration in response to intradermal injection of functionalized graphene-based nanomaterial. J Appl Toxicol. 2017;37(11):1317–24.

    CAS  PubMed  Google Scholar 

  148. Bramini M, Alberini G, Colombo E, Chiacchiaretta M, DiFrancesco ML, Maya-Vetencourt JF, et al. Interfacing graphene-based materials with neural cells. Front Syst Neurosci. 2018;12:12.

  149. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vázquez E, León Castellanos V, et al. Graphene oxide nanosheets disrupt lipid composition, Ca2+ homeostasis, and synaptic transmission in primary cortical neurons. ACS Nano. 2016;10(7):7154–71.

  150. Rauti R, Medelin M, Newman L, Vranic S, Reina G, Bianco A, et al. Graphene oxide flakes tune excitatory neurotransmission in vivo by targeting hippocampal synapses. Nano Lett. 2019;19(5):2858–70.

  151. Chiacchiaretta M, Bramini M, Rocchi A, Armirotti A, Giordano E, Vázquez E, et al. Graphene oxide upregulates the homeostatic functions of primary astrocytes and modulates astrocyte-to-neuron communication. Nano Lett. 2018;18(9):5827–38.

  152. Bramini M, Chiacchiaretta M, Armirotti A, Rocchi A, Kale DD, Martin C, et al. An increase in membrane cholesterol by graphene oxide disrupts calcium homeostasis in primary astrocytes. Small. 2019;15(15):1900147.

  153. Durso M, Borrachero-Conejo AI, Bettini C, Treossi E, Scidà A, Saracino E, et al. Biomimetic graphene for enhanced interaction with the external membrane of astrocytes. J Mater Chem B. 2018;6(33):5335–42.

  154. Kitko KE, Hong T, Lazarenko RM, Ying D, Xu YQ, Zhang Q. Membrane cholesterol mediates the cellular effects of monolayer graphene substrates. Nat Commun. 2018;9:796.

    PubMed  PubMed Central  Google Scholar 

  155. Chen X, Park YJ, Kang M, Kang SK, Koo J, Shinde SM, et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat Commun. 2018;9:1690.

  156. Mendonca MC, Soares ES, de Jesus MB, Ceragioli HJ, Irazusta SP, Batista AG, et al. Reduced graphene oxide: nanotoxicological profile in rats. J Nanobiotechnol. 2016;14:53.

  157. Mendonca MC, Soares ES, de Jesus MB, Ceragioli HJ, Batista AG, Nyul-Toth A, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm. 2016;13(11):3913–24.

  158. Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat Nanotechnol. 2018;13:755–64.

  159. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011;23(36):H263–7.

  160. Liao C, Li Y, Tjong SC. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci. 2018;19(11):3564.

    PubMed Central  Google Scholar 

  161. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574–8.

  162. Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon JK, et al. Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater. 2014;3(2):176–81.

  163. Ali-Boucetta H, Bitounis D, Raveendran-Nair R, Servant A, Van den Bossche J, Kostarelos K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater. 2013;2(3):433–41.

  164. Zhang Y, Nayak TR, Hong H, Cai W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale. 2012;4(13):3833–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4(6):3181–6.

  166. Schinwald A, Murphy FA, Jones A, Macnee W, Donaldson K. Graphene-based nanoplatelets: a new risk to the respiratory system. ACS Nano. 2012;6(1):736–46.

    CAS  PubMed  Google Scholar 

  167. Teo WZ, Chng ELK, Sofer Z, Pumera M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem Eur J. 2014;20(31):9627–32.

    CAS  PubMed  Google Scholar 

  168. Dhenadhayalan N, Yadav K, Sriram MI, Lee HL, Lin KC. Ultra-sensitive DNA sensing of a prostate-specific antigen based on 2D nanosheets in live cells. Nanoscale. 2017;9(33):12087–95.

    CAS  PubMed  Google Scholar 

  169. Ayán-Varela M, Pérez-Vidal Ó, Paredes JI, Munuera JM, Villar-Rodil S, Díaz-González M, et al. Aqueous exfoliation of transition metal dichalcogenides assisted by DNA/RNA nucleotides: catalytically active and biocompatible nanosheets stabilized by acid-base interactions. ACS Appl Mater Interfaces. 2017;9(3):2835–45.

  170. Guan G, Zhang S, Liu S, Cai Y, Low M, Teng CP, et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J Am Chem Soc. 2015;137(19):6152–5.

  171. Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, et al. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small. 2015;11(38):5079–87.

  172. Chng ELK, Sofer Z, Pumera M. MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale. 2014;6(23):14412–8.

    CAS  PubMed  Google Scholar 

  173. Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano. 2015;9(1):950–60.

  174. Kim J, Kim H, Kim WJ. Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small. 2016;12(9):1184–92.

    CAS  PubMed  Google Scholar 

  175. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26(21):3433–40.

  176. Kaur J, Singh M, Dell’Aversana C, Benedetti R, Giardina P, Rossi M, et al. Biological interactions of biocompatible and water-dispersed MoS2 nanosheets with bacteria and human cells. Sci Rep. 2018;8:16386.

  177. Shah P, Narayanan TN, Li CZ, Alwarappan S. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology. 2015;26(31):315102.

    PubMed  Google Scholar 

  178. Appel JH, Li DO, Podlevsky JD, Debnath A, Green AA, Wang QH, et al. Low cytotoxicity and genotoxicity of two-dimensional MoS2 and WS2. ACS Biomater Sci Eng. 2016;2(3):361–7.

  179. Kim JE, Yim D, Han SW, Nam J, Kim JH, Kim JW. Effective suppression of oxidative stress on living cells in hydrogel particles containing a physically immobilized WS2 radical scavenger. ACS Appl Mater Interfaces. 2019;11(20):18817–24.

    CAS  PubMed  Google Scholar 

  180. Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Olszyna A. In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.

  181. Liang R, Li Y, Huo M, Lin H, Chen Y. Triggering sequential catalytic Fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Appl Mater Interfaces. 2019;11(46):42917–31.

    CAS  PubMed  Google Scholar 

  182. Rafieerad A, Sequiera GL, Yan W, Kaur P, Amiri A, Dhingra S. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J Mech Behav Biomed Mater. 2020;101:103440.

    CAS  PubMed  Google Scholar 

  183. Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, Lelyukh P, et al. Two-dimensional Ti3C2 MXene for high- resolution neural interfaces. ACS Nano. 2018;12(10):10419–29.

  184. Zhang J, Fu Y, Mo A. Multilayered titanium carbide MXene film for guided bone regeneration. Int J Nanomedicine. 2019;14:10091–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kurapati R, Backes C, Menard-Moyon C, Coleman JN, Bianco A. White graphene undergoes peroxidase degradation. Angew Chem Int Ed Engl. 2016;55(18):5506–11.

    CAS  PubMed  Google Scholar 

  186. Mukherjee SP, Gliga AR, Lazzaretto B, Brandner B, Fielden M, Vogt C, et al. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale. 2018;10:1180–8.

  187. Kurapati R, Mukherjee SP, Martín C, Bepete G, Vázquez E, Pénicaud A, et al. Degradation of single-layer and few-layer graphene by neutrophil myeloperoxidase. Angew Chem Int Ed. 2018;57(6):11722–7.

  188. Newman L, Lozano N, Zhang M, Iijima S, Yudasaka M, Bussy C, et al. Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns. npj 2D. Mater Appl. 2017;1:39.

  189. Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small. 2014;10(8):1544–54.

  190. Kurapati R, Bonachera F, Russier J, Sureshbabu AR, Ménard-Moyon C, Kostarelos K, et al. Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Mater. 2018;5(1):015020.

  191. Mei L, Zhang X, Yin W, Dong X, Guo Z, Fu W, et al. Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS2. Nanoscale. 2019;11:4767–80.

Download references

Acknowledgements

Financial support from the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (through the EuroNanoMed III project nanoLight, Grant Agreement No. 135 from 09/03/2020) and from the European Union’s Horizon 2020 research and innovation program through the MSCA-COFUND Athenea3i scheme (Grant Agreement No. 754446) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilveszter Gáspár.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection 2D Nanomaterials for Electroanalysis with guest editor Sabine Szunerits.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munteanu, RE., Moreno, P.S., Bramini, M. et al. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal Bioanal Chem 413, 701–725 (2021). https://doi.org/10.1007/s00216-020-02831-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02831-1

Keywords

Navigation