Skip to main content

Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40(1):133–159. https://doi.org/10.1093/femsre/fuv008

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862(11):1287–1299. https://doi.org/10.1016/j.bbalip.2016.10.007

    Article  CAS  Google Scholar 

  3. Rietveld AG, Killian JA, Dowhan W, de Kruijff B (1993) Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268(17):12427–12433

    Article  CAS  Google Scholar 

  4. Cronan JE Jr (1974) Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Proc Natl Acad Sci U S A 71(9):3758–3762

    Article  CAS  Google Scholar 

  5. Robert CB, Thomson M, Vercellone A, Gardner F, Ernst RK, Larrouy-Maumus G, Nigou J (2017) Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie 141:16–20. https://doi.org/10.1016/j.biochi.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Kang SS, Sim JR, Yun CH, Han SH (2016) Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res 39(11):1519–1529. https://doi.org/10.1007/s12272-016-0804-y

    Article  CAS  PubMed  Google Scholar 

  7. Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2(3):171–179

    Article  CAS  Google Scholar 

  8. Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100. https://doi.org/10.1146/annurev-micro-091213-112949

    Article  CAS  PubMed  Google Scholar 

  9. Lindberg AA, Karnell A, Weintraub A (1991) The lipopolysaccharide of Shigella bacteria as a virulence factor. Rev Infect Dis 13(Suppl 4):S279–S284

    Article  CAS  Google Scholar 

  10. Matsuura M (2013) Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front Immunol 4:109. https://doi.org/10.3389/fimmu.2013.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeshima N, Evans-Atkinson T, Hajjar AM, Fernandez RC (2015) Bordetella pertussis lipid A recognition by toll-like receptor 4 and MD-2 is dependent on distinct charged and uncharged interfaces. J Biol Chem 290(21):13440–13453. https://doi.org/10.1074/jbc.M115.653881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korneev KV, Kondakova AN, Sviriaeva EN, Mitkin NA, Palmigiano A, Kruglov AA, Telegin GB, Drutskaya MS, Sturiale L, Garozzo D, Nedospasov SA, Knirel YA, Kuprash DV (2018) Hypoacylated LPS from foodborne pathogen Campylobacter jejuni induces moderate TLR4-mediated inflammatory response in murine macrophages. Front Cell Infect Microbiol 8:58. https://doi.org/10.3389/fcimb.2018.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larrouy-Maumus G, Gilleron M, Skovierova H, Zuberogoitia S, Brennan PJ, Puzo G, Jackson M, Nigou J (2015) A glycomic approach reveals a new mycobacterial polysaccharide. Glycobiology 25(11):1163–1171. https://doi.org/10.1093/glycob/cwv061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krishna S, Ray A, Dubey SK, Larrouy-Maumus G, Chalut C, Castanier R, Noguera A, Gilleron M, Puzo G, Vercellone A, Nampoothiri KM, Nigou J (2011) Lipoglycans contribute to innate immune detection of mycobacteria. PLoS One 6(12):e28476. https://doi.org/10.1371/journal.pone.0028476. PONE-D-10-06335 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skovierova H, Larrouy-Maumus G, Zhang J, Kaur D, Barilone N, Kordulakova J, Gilleron M, Guadagnini S, Belanova M, Prevost MC, Gicquel B, Puzo G, Chatterjee D, Brennan PJ, Nigou J, Jackson M (2009) AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology 19(11):1235–1247. https://doi.org/10.1093/glycob/cwp116. cwp116 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414

    Article  CAS  PubMed  Google Scholar 

  17. Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338(23):2431–2447

    Article  CAS  Google Scholar 

  18. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189(11):1777–1782

    Article  CAS  Google Scholar 

  19. Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34(2):73–82. https://doi.org/10.1016/j.jdermsci.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Schletter J, Heine H, Ulmer AJ, Rietschel ET (1995) Molecular mechanisms of endotoxin activity. Arch Microbiol 164(6):383–389

    Article  CAS  Google Scholar 

  21. DeMarco ML, Woods RJ (2011) From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Mol Immunol 49(1–2):124–133. https://doi.org/10.1016/j.molimm.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297(5):277–295. https://doi.org/10.1016/j.ijmm.2007.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70(8):4092–4098

    Article  CAS  Google Scholar 

  24. Sturiale L, Garozzo D, Silipo A, Lanzetta R, Parrilli M, Molinaro A (2005) New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. Rapid Commun Mass Spectrom 19(13):1829–1834. https://doi.org/10.1002/rcm.1994

    Article  CAS  PubMed  Google Scholar 

  25. De Castro C, Parrilli M, Holst O, Molinaro A (2010) Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of gram-negative bacterial lipopolysaccharides. Methods Enzymol 480:89–115. https://doi.org/10.1016/S0076-6879(10)80005-9

    Article  CAS  PubMed  Google Scholar 

  26. Westphal O, Luderitz O, Rietschel ET, Galanos C (1981) Bacterial lipopolysaccharide and its lipid A component: some historical and some current aspects. Biochem Soc Trans 9(3):191–195

    Article  CAS  Google Scholar 

  27. Westphal O, Luderitz O (1953) [Chemical and biological analysis of highly purified bacterial polysaccharides]. Deutsche medizinische Wochenschrift 78(21):17-19

    Google Scholar 

  28. El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M (2005) Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 46(8):1773–1778. https://doi.org/10.1194/jlr.D500014-JLR200

    Article  CAS  PubMed  Google Scholar 

  29. Furniss RCD, Dortet L, Bolland W, Drews O, Sparbier K, Bonnin RA, Filloux A, Kostrzewa M, Mavridou DAI, Larrouy-Maumus G (2019) Detection of colistin resistance in Escherichia coli using the MALDI Biotyper Sirius mass spectrometry system. J Clin Microbiol 57(12):e01427–e01419. https://doi.org/10.1128/JCM.01427-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dortet L, Broda A, Bernabeu S, Glupczynski Y, Bogaerts P, Bonnin R, Naas T, Filloux A, Larrouy-Maumus G (2019) Optimization of the MALDIxin test for the rapid identification of colistin resistance in Klebsiella pneumoniae using MALDI-TOF MS. J Antimicrob Chemother 75(1):110–116. https://doi.org/10.1093/jac/dkz405

    Article  CAS  PubMed Central  Google Scholar 

  31. Potron A, Vuillemenot JB, Puja H, Triponney P, Bour M, Valot B, Amara M, Cavalie L, Bernard C, Parmeland L, Reibel F, Larrouy-Maumus G, Dortet L, Bonnin RA, Plesiat P (2019) ISAba1-dependent overexpression of eptA in clinical strains of Acinetobacter baumannii resistant to colistin. J Antimicrob Chemother 74(9):2544–2550. https://doi.org/10.1093/jac/dkz241

    Article  CAS  PubMed  Google Scholar 

  32. Dortet L, Potron A, Bonnin RA, Plesiat P, Naas T, Filloux A, Larrouy-Maumus G (2018) Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep 8(1):16910. https://doi.org/10.1038/s41598-018-35041-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larrouy-Maumus G, Puzo G (2015) Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis (Edinb) 95(1):75–85. https://doi.org/10.1016/j.tube.2014.11.001

    Article  CAS  Google Scholar 

  34. Rebollo-Ramirez S, Krokowski S, Lobato-Marquez D, Thomson M, Pennisi I, Mostowy S, Larrouy-Maumus G (2018) Intact cell lipidomics reveal changes to the ratio of cardiolipins to phosphatidylinositols in response to kanamycin in HeLa and primary cells. Chem Res Toxicol 31(8):688–696. https://doi.org/10.1021/acs.chemrestox.8b00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott AJ, Flinders B, Cappell J, Liang T, Pelc RS, Tran B, Kilgour DP, Heeren RM, Goodlett DR, Ernst RK (2016) Norharmane matrix enhances detection of endotoxin by MALDI-MS for simultaneous profiling of pathogen, host, and vector systems. Pathog Dis 74(8):ftw097. https://doi.org/10.1093/femspd/ftw097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the MRC Confidence in Concept Fund and the ISSF Wellcome Trust Grant 105603/Z/14/Z. G.L.-M. is co-inventor of the MALDIxin test for which a patent has been filed by Imperial Innovations WO2018158573.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Larrouy-Maumus, G. (2021). Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics