Skip to main content
Log in

Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Wild edible mushrooms can accumulate significantly elevated levels of mercury from the surrounding environment, which could be harmful to consumers’ health. Speciation analysis of mercury in wild edible mushrooms aids in understanding the human exposure to these toxic compounds. In this study, we developed a high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method for the simultaneous determination of inorganic mercury (Hg(II)), methylmercury (MeHg), ethylmercury (EtHg), and phenylmercury (PhHg) in wild edible mushrooms. A rapid separation of four target mercury species was achieved within 11 min by a C8 column without utilizing high proportion of organic phase in HPLC. The parameters affecting the extraction efficiency of mercury in samples have been investigated. The proposed method showed good linearity within 0–50 μg/L with the detection and quantification limits of 0.6–4.5 μg/kg (S/N = 3), and 2.0–15 μg/kg (S/N = 10), respectively. This proposed method was successfully applied to the mercury speciation analysis in 7 varieties (95 samples) of wild edible mushrooms. The results indicated that in most mushroom samples, mercury mainly occurred as inorganic mercury. But there were two Tricholoma matsutakes, one contained 0.14 mg/kg of methylmercury, another contained 1.05 mg/kg of phenylmercury, which were higher than the maximum allowable content of total mercury in edible mushrooms in China.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Falandysz J. Mercury accumulation of three Lactarius mushroom species. Food Chem. 2017;214:96–101. https://doi.org/10.1016/j.foodchem.2016.07.062.

    Article  PubMed  CAS  Google Scholar 

  2. Siric I, Humar M, Kasap A, Kos I, Mioc B, Pohleven F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ Sci Pollut Res. 2016;23(18):18239–52. https://doi.org/10.1007/s11356-016-7027-0.

    Article  CAS  Google Scholar 

  3. Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem. 2010;122(1):2–15. https://doi.org/10.1016/j.foodchem.2010.02.045.

    Article  CAS  Google Scholar 

  4. Falandysz J, Krasinska G, Pankavec S, Nnorom IC. Mercury in certain boletus mushrooms from Poland and Belarus. J Environ Sci Health B. 2014;49(9):690–5. https://doi.org/10.1080/03601234.2014.922853.

    Article  PubMed  CAS  Google Scholar 

  5. Commission NHaFP (2017) National Food Safety Standard-Maximum Levels of Contaminants in Foods. vol GB 2762-2017. National Health and Family Planning Commission.

  6. Falandysz J, Saba M, Liu HG, Li T, Wang JP, Wiejak A, et al. Mercury in forest mushrooms and topsoil from the Yunnan highlands and the subalpine region of the Minya Konka summit in the eastern Tibetan Plateau. Environ Sci Pollut Res. 2016;23(23):23730–41. https://doi.org/10.1007/s11356-016-7580-6.

    Article  CAS  Google Scholar 

  7. Wiejak A, Wang Y, Zhang J, Falandysz J. Bioconcentration potential and contamination with mercury of pantropical mushroom Macrocybe gigantea. J Environ Sci Health B. 2014;49(11):811–4. https://doi.org/10.1080/03601234.2014.938549.

    Article  PubMed  CAS  Google Scholar 

  8. Kojta AK, Zhang J, Wang Y, Li T, Saba M, Falandysz J. Mercury contamination of fungi genus Xerocomus in the Yunnan province in China and the region of Europe. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(13):1342–50. https://doi.org/10.1080/10934529.2015.1059108.

    Article  PubMed  CAS  Google Scholar 

  9. Delafiori J, Ring G, Furey A. Clinical applications of HPLC-ICP-MS element speciation: a review. Talanta. 2016;153:306–31. https://doi.org/10.1016/j.talanta.2016.02.035.

    Article  PubMed  CAS  Google Scholar 

  10. Bjorklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: current research and emerging trends. Environ Res. 2017;159:545–54. https://doi.org/10.1016/j.envres.2017.08.051.

    Article  PubMed  CAS  Google Scholar 

  11. Dorea JG, Farina M, Rocha JB. Toxicity of ethylmercury (and thimerosal): a comparison with methylmercury. J Appl Toxicol. 2013;33(8):700–11. https://doi.org/10.1002/jat.2855.

    Article  PubMed  CAS  Google Scholar 

  12. Fischer RG, Rapsomanikis S, Andreae MO, Baldi F. Bioaccumulation of methylmercury and transformation of inorganic mercury by macrofungi. Environ Sci Technol. 1995;29(4):993–9. https://doi.org/10.1021/es00004a020.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 2013;47(6):2441–56. https://doi.org/10.1021/es304370g.

    Article  PubMed  CAS  Google Scholar 

  14. Narukawa T, Iwai T, Chiba K, Feldmann J. A method for methylmercury and inorganic mercury in biological samples using high performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal Sci. 2018;34(11):1329–34. https://doi.org/10.2116/analsci.18P255.

    Article  PubMed  CAS  Google Scholar 

  15. Kodamatani H, Matsuyama A, Saito K, Kono Y, Kanzaki R, Tomiyasu T. Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with chemiluminescence detection. Anal Sci. 2012;28(10):959–65. https://doi.org/10.2116/analsci.28.959.

    Article  PubMed  CAS  Google Scholar 

  16. Vallant B, Kadnar R, Goessler W. Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J Anal At Spectrom. 2007;22(3):322–5. https://doi.org/10.1039/B615463H.

    Article  CAS  Google Scholar 

  17. Queipo Abad S, Rodriguez-Gonzalez P, Davis WC, Garcia Alonso JI. Development of a common procedure for the determination of methylmercury, ethylmercury, and inorganic mercury in human whole blood, hair, and urine by triple spike species-specific isotope dilution mass spectrometry. Anal Chem. 2017;89(12):6731–9. https://doi.org/10.1021/acs.analchem.7b00966.

    Article  PubMed  CAS  Google Scholar 

  18. Teran-Baamonde J, Bouchet S, Tessier E, Amouroux D. Development of a large volume injection method using a programmed temperature vaporization injector - gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters. J Chromatogr A. 2018;1547:77–85. https://doi.org/10.1016/j.chroma.2018.02.056.

    Article  PubMed  CAS  Google Scholar 

  19. Lin Y, Yang Y, Li Y, Yang L, Hou X, Feng X, et al. Ultrasensitive speciation analysis of mercury in rice by headspace solid phase microextraction using porous carbons and gas chromatography-dielectric barrier discharge optical emission spectrometry. Environ Sci Technol. 2016;50(5):2468–76. https://doi.org/10.1021/acs.est.5b04328.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng H, Chen X, Shen L, Wang Y, Xu Z, Liu J. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish. J Chromatogr A. 2018;1531:104–11. https://doi.org/10.1016/j.chroma.2017.11.029.

    Article  PubMed  CAS  Google Scholar 

  21. Liu H, Luo J, Ding T, Gu S, Yang S, Yang M. Speciation analysis of trace mercury in sea cucumber species of Apostichopus japonicus using high-performance liquid chromatography conjunction with inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 2018;186(2):554–61. https://doi.org/10.1007/s12011-018-1309-y.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang D, Yang S, Cheng H, Wang Y, Liu J. Speciation of inorganic and organic species of mercury and arsenic in lotus root using high performance liquid chromatography with inductively coupled plasma mass spectrometric detection in one run. Talanta. 2019;199:620–7. https://doi.org/10.1016/j.talanta.2019.03.023.

    Article  PubMed  CAS  Google Scholar 

  23. Jimenez-Moreno M, Lominchar MA, Sierra MJ, Millan R, Martin-Doimeadios RCR. Fast method for the simultaneous determination of monomethylmercury and inorganic mercury in rice and aquatic plants. Talanta. 2018;176:102–7. https://doi.org/10.1016/j.talanta.2017.08.015.

    Article  PubMed  CAS  Google Scholar 

  24. Liu YM, Zhang FP, Jiao BY, Rao JY, Leng G. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. J Chromatogr A. 2017;1493:1–9. https://doi.org/10.1016/j.chroma.2017.03.002.

    Article  PubMed  CAS  Google Scholar 

  25. Madrid Y, Cabrera C, Perez-Corona T, Camara C. Speciation of methylmercury and Hg(II) using baker's yeast biomass (Saccharomyces cerevisiae). Determination by continuous flow mercury cold vapor generation atomic absorption spectrometry. Anal Chem. 1995;67(4):750–4.

    Article  CAS  Google Scholar 

  26. Yu X, Liu C, Guo Y, Deng T (2019) Speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples based on hyphenated techniques. Molecules (Basel, Switzerland) 24 (5). doi:https://doi.org/10.3390/molecules24050926.

  27. Rahman GMM, Wolle MM, Fahrenholz T, Kingston HMS, Pamuku M. Measurement of mercury species in whole blood using Speciated isotope dilution methodology integrated with microwave-enhanced Solubilization and spike equilibration, headspace–solid-phase microextraction, and GC-ICP-MS analysis. Anal Chem. 2014;86(12):6130–7. https://doi.org/10.1021/ac501352d.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu S, Chen B, He M, Huang T, Hu B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta. 2017;171:213–9. https://doi.org/10.1016/j.talanta.2017.04.068.

    Article  PubMed  CAS  Google Scholar 

  29. Doker S, Bosgelmez II. Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem. 2015;184:147–53. https://doi.org/10.1016/j.foodchem.2015.03.067.

    Article  PubMed  CAS  Google Scholar 

  30. Sébastien Sannac Y-HC, Raimund Wahlen, Ed McCurdy (2017) Benefits of HPLC-ICP-MS coupling for mercury speciation in food. Agilent Technologies. https://www.agilent.com/cs/library/applications/7800_ICP-MS_5991-0066EN_AppNote_Hg_speciation.pdf. Accessed 20 Dec 2019.

  31. Dryzalowska A, Falandysz J. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: levels, possible intake and safety. Ecotoxicol Environ Saf. 2014;107:97–102. https://doi.org/10.1016/j.ecoenv.2014.05.020.

    Article  PubMed  CAS  Google Scholar 

  32. Saba M, Falandysz J, Nnorom IC. Accumulation and distribution of mercury in fruiting bodies by fungus Suillus luteus foraged in Poland, Belarus and Sweden. Environ Sci Pollut Res. 2016;23(3):2749–57. https://doi.org/10.1007/s11356-015-5513-4.

    Article  CAS  Google Scholar 

  33. Yang S, Zhang D, Cheng H, Wang Y, Liu J. Graphene oxide as an efficient adsorbent of solid-phase extraction for online preconcentration of inorganic and organic mercurials in freshwater followed by HPLC-ICP-MS determination. Anal Chim Acta. 2019;1074:54–61. https://doi.org/10.1016/j.aca.2019.04.066.

    Article  PubMed  CAS  Google Scholar 

  34. Chen X, Han C, Cheng H, Wang Y, Liu J, Xu Z, et al. Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J Chromatogr A. 2013;1314:86–93. https://doi.org/10.1016/j.chroma.2013.08.104.

    Article  PubMed  CAS  Google Scholar 

  35. Meers JD, Jahromi EZ, Heyne B, Gailer J. Improved RP-HPLC separation of Hg(2)(+) and CH(3)Hg(+) using a mixture of thiol-based mobile phase additives. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(1):149–54. https://doi.org/10.1080/10934529.2012.630305.

    Article  PubMed  CAS  Google Scholar 

  36. Vacchina V, Seby F, Chekri R, Verdeil J, Dumont J, Hulin M, et al. Optimization and validation of the methods for the total mercury and methylmercury determination in breast milk. Talanta. 2017;167:404–10. https://doi.org/10.1016/j.talanta.2017.02.046.

    Article  PubMed  CAS  Google Scholar 

  37. Wang H, Chen B, Zhu S, Yu X, He M, Hu B. Chip-based magnetic solid-phase microextraction online coupled with microHPLC-ICPMS for the determination of mercury species in cells. Anal Chem. 2016;88(1):796–802. https://doi.org/10.1021/acs.analchem.5b03130.

    Article  PubMed  CAS  Google Scholar 

  38. Rutkowska M, Bajger-Nowak G, Kowalewska D, Bzoma S, Kalisinska E, Namiesnik J, et al. Methylmercury and total mercury content in soft tissues of two bird species wintering in the Baltic Sea near Gdansk, Poland. Chemosphere. 2019;219:140–7. https://doi.org/10.1016/j.chemosphere.2018.11.162.

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Xie Q, Xu Q, Xue J, Zhang C, Wang D. Mercury bioaccumulation in fish in an artificial lake used to carry out cage culture. J Environ Sci (China). 2019;78:352–9. https://doi.org/10.1016/j.jes.2018.11.016.

    Article  Google Scholar 

  40. Carrasco L, Vassileva E. Determination of methylmercury in marine sediment samples: method validation and occurrence data. Anal Chim Acta. 2015;853:167–78. https://doi.org/10.1016/j.aca.2014.10.026.

    Article  PubMed  CAS  Google Scholar 

  41. Fang Y, Pan Y, Li P, Xue M, Pei F, Yang W, et al. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry. Food Chem. 2016;213:609–15. https://doi.org/10.1016/j.foodchem.2016.07.003.

    Article  PubMed  CAS  Google Scholar 

  42. Sommer YL, Verdon CP, Fresquez MR, Ward CD, Wood EB, Pan Y, et al. Measurement of mercury species in human blood using triple spike isotope dilution with SPME-GC-ICP-DRC-MS. Anal Bioanal Chem. 2014;406(20):5039–47. https://doi.org/10.1007/s00216-014-7907-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sysalová J, Kučera J, Drtinová B, Červenka R, Zvěřina O, Komárek J, et al. Mercury species in formerly contaminated soils and released soil gases. Sci Total Environ. 2017;584-585:1032–9. https://doi.org/10.1016/j.scitotenv.2017.01.157.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was financially supported by Chengdu Center for Disease Control and Prevention (Project No. 20190102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Zhou, C., Li, Y. et al. Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem 412, 2829–2840 (2020). https://doi.org/10.1007/s00216-020-02515-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02515-w

Keywords

Navigation