Skip to main content
Log in

Magnetic molecularly imprinted electrospun nanofibers for selective extraction of nilotinib from human serum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new magnetic molecularly imprinted nanofiber (MMIN) nanocomposite was prepared and used to the selective extraction of nilotinib. MMIN was constructed using a novel and general method including a combination of molecular imprinting and electrospinning technology. By electrospun precursor nanofibers containing polyacrylonitrile, Fe3O4 magnetic nanoparticles, and nilotinib as the template, molecularly imprinted nanofibers were produced with a mean diameter of 500 nm and lengths up to several millimeters. The microstructure and morphology of the prepared MMIN were thoroughly investigated using techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). The MMIN was then used to the extraction of nilotinib. The extracted nilotinib was re-extracted and determined spectrofluorimetrically at the excitation and emission wavelengths of 271 and 335 nm, respectively. The relation between fluorescence signal for the re-extracted solution and nilotinib concentration was linear in the range 0.01–10.0 mg L−1 (n = 9) and the RSD for the determination of 1.0 and 5.0 mg L−1 nilotinib 2.75% and 1.09% (n = 3), respectively. The detection limit of the method was obtained as 0.002 mg L−1 nilotinib. The results indicated that the proposed method can be successfully applied to the determination of nilotinib in human serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kantarjian H, Giles F, Wunderle L, Bhalla K, O'brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome–positive ALL. N Engl J Med. 2006;354(24):2542–51.

    PubMed  Google Scholar 

  2. Blay J-Y, Von Mehren M, editors. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol; 2011: Elsevier.

  3. D’Avolio A, Simiele M, De Francia S, Ariaudo A, Baietto L, Cusato J, et al. HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib and nilotinib in human peripheral blood mononuclear cell (PBMC). J Pharm Biomed. 2012;59:109–16.

    Google Scholar 

  4. Kralj E, Trontelj J, Pajič T, Kristl A. Simultaneous measurement of imatinib, nilotinib and dasatinib in dried blood spot by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B. 2012;903:150–6.

    CAS  Google Scholar 

  5. Yilmaz E, Aydoğmuş Z, Aboul-Enein H. Determination of nilotinib in spiked plasma, urine, and capsules by high-performance liquid chromatography with fluorimetric detection. Acta Chromatogr. 2016;28(3):313–31.

    CAS  Google Scholar 

  6. Akashi N, Matsumoto I, Tanaka Y, Inoue A, Yamamoto K, Umeda N, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis. Mod Rheumatol. 2011;21(3):267–75.

    CAS  PubMed  Google Scholar 

  7. Zeng J, Cai HL, Jiang ZP, Wang Q, Zhu Y, Xu P, et al. A validated UPLC–MS/MS method for simultaneous determination of imatinib, dasatinib and nilotinib in human plasma. J Pharm Biomed Anal. 2017;7(6):374–80.

    Google Scholar 

  8. Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N, et al. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin Chim Acta. 2011;412(11–12):1060–7.

    CAS  PubMed  Google Scholar 

  9. Kang XJ, Chen LQ, Zhang YY, Liu YW, Gu ZZ. Performance of electrospun nanofibers for SPE of drugs from aqueous solutions. J Sep Sci. 2008;31(18):3272–8.

    CAS  PubMed  Google Scholar 

  10. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    CAS  Google Scholar 

  11. Yan X, Han Z, Yang Y, Tay B. NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors Actuators B Chem. 2007;123(1):107–13.

    CAS  Google Scholar 

  12. Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram. 2012;1(1):2–23.

    CAS  Google Scholar 

  13. Stobiecka M, Deeb J, Hepel M. Molecularly templated polymer matrix films for biorecognition processes: sensors for evaluating oxidative stress and redox buffering capacity. ECS Trans. 2009;19(28):15–32.

    CAS  Google Scholar 

  14. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40(5):2922–42.

    CAS  PubMed  Google Scholar 

  15. Lanza F, Sellergren B. The application of molecular imprinting technology to solid phase extraction. Chromatographia. 2001;53(11–12):599–611.

    CAS  Google Scholar 

  16. Bagheri AR, Arabi M, Ghaedi M, Ostovan A, Wang X, Li J, et al. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta. 2019;195:390–400.

    CAS  PubMed  Google Scholar 

  17. Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L. Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Appl Mater Interfaces. 2018;10(4):4140–50.

    CAS  PubMed  Google Scholar 

  18. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45(8):2137–211.

    CAS  PubMed  Google Scholar 

  19. Tavengwa NT, Cukrowska E, Chimuka L. Application of magnetic molecularly imprinted polymers for the solid phase extraction of selected nitroaromatic compounds from contaminated aqueous environments. Sep Sci Technol. 2017;52(3):467–75.

    CAS  Google Scholar 

  20. Afkhami A, Ghaedi H, Madrakian T, Ahmadi M, Mahmood-Kashani H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens Bioelectron. 2013;44:34–40.

    CAS  PubMed  Google Scholar 

  21. Madrakian T, Ahmadi M, Afkhami A, Soleimani M. Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst. 2013;138(16):4542–9.

    CAS  PubMed  Google Scholar 

  22. Madrakian T, Afkhami A, Mahmood-Kashani H, Ahmadi M. Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples. Talanta. 2013;105:255–61.

    CAS  PubMed  Google Scholar 

  23. Ahmadi M, Madrakian T, Afkhami A. Molecularly imprinted polymer coated magnetite nanoparticles as an efficient mefenamic acid resonance light scattering nanosensor. Anal Chim Acta. 2014;852:250–6.

    CAS  PubMed  Google Scholar 

  24. Ahmadi M, Madrakian T, Afkhami A. Solid phase extraction of doxorubicin using molecularly imprinted polymer coated magnetite nanospheres prior to its spectrofluorometric determination. New J Chem. 2015;39(1):163–71.

    CAS  Google Scholar 

  25. Caro E, Masqué N, Marcé RM, Borrull F, Cormack PA, Sherrington DC. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J Chromatogr A. 2002;963(1–2):169–78.

    CAS  PubMed  Google Scholar 

  26. Cacho C, Turiel E, Martin-Esteban A, Ayala D, Perez-Conde C. Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. J Chromatogr A. 2006;1114(2):255–62.

    CAS  PubMed  Google Scholar 

  27. Qi P, Wang J, Wang L, Li Y, Jin J, Su F, et al. Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer. 2010;51(23):5417–23.

    CAS  Google Scholar 

  28. Puzio K, Delépée R, Vidal R, Agrofoglio LA. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent–semi-covalent molecularly imprinted polymer of vanillin. Anal Chem Acta. 2013;790:47–55.

    CAS  Google Scholar 

  29. Curcio P, Zandanel C, Wagner A, Mioskowski C, Baati R. Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte. Macromol Biosci. 2009;9(6):596–604.

    CAS  PubMed  Google Scholar 

  30. Caro E, Marcé RM, Cormack PA, Sherrington DC, Borrull F. On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water. J Chromatogr A. 2003;995(1–2):233–8.

    CAS  PubMed  Google Scholar 

  31. Kotrotsiou O, Kiparissides C. Water treatment by molecularly imprinted materials. Nanoscale Materials in Water Purification. Elsevier; 2019. 179–230.

  32. Wang X, Yu J, Sun G, Ding B. Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Appl Mater Today. 2016;19(7):403–14.

    CAS  Google Scholar 

  33. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li C, Qin B, Zhang Y, Varzi A, Passerini S, Wang J, et al. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv Energy Mater. 2019;1803422.

    Google Scholar 

  35. Aytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloid Surf B. 2019.

  36. Chigome S, Darko G, Torto N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst. 2011;136(14):2879–89.

    CAS  PubMed  Google Scholar 

  37. Che A-F, Yang Y-F, Wan L-S, Wu J, Xu Z-K. Molecular imprinting fibrous membranes of poly (acrylonitrile-co-acrylic acid) prepared by electrospinning. Chem Res Chin Univ. 2006;22(3):390.

    CAS  Google Scholar 

  38. Yoshimatsu K, Ye L, Lindberg J, Chronakis IS. Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron. 2008;23(7):1208–15.

    CAS  PubMed  Google Scholar 

  39. Ruggieri F, D’Archivio AA, Di Camillo D, Lozzi L, Maggi M, Mercorio R, et al. Development of molecularly imprinted polymeric nanofibers by electrospinning and applications to pesticide adsorption. J Sep Sci. 2015;38(8):1402–10.

    CAS  PubMed  Google Scholar 

  40. Kan X, Zhao Y, Geng Z, Wang Z, Zhu J-J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C. 2008;112(13):4849–54.

    CAS  Google Scholar 

  41. Wan L-S, Ke B-B, Wu J, Xu Z-K. Catalase immobilization on electrospun nanofibers: effects of porphyrin pendants and carbon nanotubes. J Phys Chem C. 2007;111(38):14091–7.

    CAS  Google Scholar 

  42. Chronakis IS, Milosevic B, Frenot A, Ye L. Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules. 2006;39(1):357–61.

    CAS  Google Scholar 

  43. Madrakian T, Afkhami A, Vanaei E, Ahmadi M. Solid phase extraction and spectrofluorometric determination of leached bisphenol A from some polycarbonate products under simulated use conditions using surface molecularly imprinted magnetite nanospheres. Anal Methods. 2015;7(15):6299–306.

    CAS  Google Scholar 

  44. Pirdadeh-Beiranvand M, Afkhami A, Madrakian T. Cloud point-magnetic dispersive solid phase extraction for the spectrofluorometric determination of citalopram. J Mol Liq. 2017;241:43–8.

    CAS  Google Scholar 

  45. Liu Q, Zhong L-B, Zhao Q-B, Frear C, Zheng Y-M. Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl Mater Interfaces. 2015;7(27):14573–83.

    CAS  PubMed  Google Scholar 

  46. Freundlich H, Heller W. The adsorption of cis-and trans-azobenzene. J Am Chem Soc. 1939;61(8):2228–30.

    CAS  Google Scholar 

  47. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. J Am Chem Soc. 1916;38(11):2221–95.

    CAS  Google Scholar 

  48. Ghazaghi M, Mousavi HZ, Shirkhanloo H, Rashidi A. Ultrasound assisted dispersive micro solid-phase extraction of four tyrosine kinase inhibitors from serum and cerebrospinal fluid by using magnetic nanoparticles coated with nickel-doped silica as an adsorbent. Microchem Acta. 2016;183(10):2779–89.

    CAS  Google Scholar 

  49. Qiu F, Bian W, Li J, Ge Z. Simultaneous determination of sunitinib and its two metabolites in plasma of Chinese patients with metastatic renal cell carcinoma by liquid chromatography–tandem mass spectrometry. Biomed Chromatogr. 2013;27(5):615–21.

    CAS  PubMed  Google Scholar 

  50. Chen H, Arias IG, Adams E, Van Schepdael A. HPLC-UV method for determining phosphorylated peptide and for Abl1 tyrosine kinase inhibition study. Chromatographia. 2014;77(3–4):241–7.

    CAS  Google Scholar 

  51. Eva K, Jurij T, Tadej P, Albin K. Simultaneous measurement ofImatinib, Nilotinib and Dasatinib in dried blood spot by ultra-highperformance liquid chromatography tandem mass spectrometry. J Chromatogr B. 2012;903:150–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Afkhami.

Ethics declarations

Ethical approval for the study was granted by the Research Ethical Committee of the Bu-Ali Sina University, and all patients gave written, informed consent.

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirdadeh-Beiranvand, M., Afkhami, A. & Madrakian, T. Magnetic molecularly imprinted electrospun nanofibers for selective extraction of nilotinib from human serum. Anal Bioanal Chem 412, 1629–1637 (2020). https://doi.org/10.1007/s00216-020-02393-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02393-2

Keywords

Navigation