Skip to main content
Log in

Detection and quantification of folic acid in serum via a dual-emission fluorescence nanoprobe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lermo A, Fabiano S, Hernandez S, Galve R, Marco M-P, Alegret S, et al. Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Biosens Bioelectron. 2009;24(7):2057–63.

    Article  CAS  Google Scholar 

  2. Hoegger D, Morier P, Vollet C, Heini D, Reymond F, Rossier JS. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal Bioanal Chem. 2007;387(1):267–75.

    Article  CAS  Google Scholar 

  3. Zhao SL, Yuan HY, Xie C, Xiao D. Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J Chromatogr A. 2006;1107(1–2):290–3.

    Article  CAS  Google Scholar 

  4. Jiang XL, Li R, Li J, He X. Electrochemical behavior and analytical determination of folic acid on carbon nanotube modified electrode. Russ J Electrochem. 2009;45(7):772–7.

    Article  CAS  Google Scholar 

  5. Iyer R, Tomar SK. Folate: a functional food constituent. J Food Sci. 2009;74(9):114–22.

    Article  Google Scholar 

  6. Chew SC, Loh SP, Khor GL. Determination of folate content in commonly consumed Malaysian foods. Int Food Res J. 2012;19(1):189–97.

    CAS  Google Scholar 

  7. Wang M, Niu W, Wu X, Li L, Yang J, Shuang S, et al. Fluorescence enhancement detection of uric acid based on water soluble 3-mercaptopropionic acid capped core/shell ZnS:Cu/ZnS. RSC Adv. 2014;4:25183–8.

    Article  CAS  Google Scholar 

  8. Chakravarty S, Dutta P, Kalita S, Sarma NS. PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sensors Actuators B Chem. 2016;232:243–50.

    Article  CAS  Google Scholar 

  9. Breithaupt DE. Determination of folic acid by ion-pair RP-HPLC in vitamin-fortified fruit juices after solid-phase extraction. Food Chem. 2001;74(4):521–5.

    Article  CAS  Google Scholar 

  10. Pawlosky RJ, Flanagan VP. A quantitative stable-isotope LC-MS method for the determination of folic acid in fortified foods. J Agric Food Chem. 2001;49(3):1282–6.

    Article  CAS  Google Scholar 

  11. Ren W, Fang YX, Wang E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano. 2011;5(8):6425–33.

    Article  CAS  Google Scholar 

  12. Kalimuthu P, Abraham JS. Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Biosens Bioelectron. 2009;24(12):3575–80.

    Article  CAS  Google Scholar 

  13. Chen ZG, Zhang GM, Chen X, Chen JH, Liu JB, Yuan HQ. A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. Biosens Bioelectron. 2013;41:844–7.

    Article  CAS  Google Scholar 

  14. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):933–7.

    Article  CAS  Google Scholar 

  15. Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2010;43(2):190–200.

    Article  CAS  Google Scholar 

  16. Genger UR, Grabolle M, Nitschke R, Nann T. Nanocrystals and nanoparticles versus molecular fluorescent labels as reporters for bioanalysis and the life sciences: a critical comparison. Advanced Fluorescence Reporters in Chemistry and Biology II. 2010;03:3–40.

  17. Tyrakowski CM, Preston TS. Ratiometric CdSe/ZnS quantum dot protein sensor. Anal Chem. 2014;86(5):2380–6.

    Article  CAS  Google Scholar 

  18. Qu ZB, Zhou XG, Gu L, Lan R, Sun D, Yua D, et al. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem Commun. 2013;49:9830–2.

    Article  CAS  Google Scholar 

  19. Shao N, Jin JY, Wang H, Zhang Y, Yang RH, Chan WH. Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. Anal Chem. 2008;80(9):3466–75.

    Article  CAS  Google Scholar 

  20. Wang M, Mei QS, Zhang K, Zhang ZP. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence. Analyst. 2012;137(7):1618–23.

    Article  CAS  Google Scholar 

  21. Zhang K, Zhou HB, Mei QS, Wang SH, Guan GJ, Liu RY, et al. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc. 2011;133(22):8424–7.

    Article  CAS  Google Scholar 

  22. Lin LP, Rong MC, Lu SS, Song XH, Zhong YX, Yan JW, et al. Facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale. 2015;7(5):1872–8.

    Article  CAS  Google Scholar 

  23. Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. Control Release. 2014;183(10):87–93.

    Article  CAS  Google Scholar 

  24. Krishnamoorthy G, Selvakumar R, Sastry TP, Sadulla S, Mandal AB, Doble M. Experimental and theoretical studies on Gallic acid assisted EDC/NHS initiated crosslinked collagen scaffolds. Mater Sci Eng C. 2014;43:164–71.

    Article  CAS  Google Scholar 

  25. Wang YH, Zhang C, Chen XC, Yang B, Yang L, Jiang CL, et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots quantum dots for the visual determination of copper ions. Nanoscale. 2016;8(11):5977–84.

    Article  CAS  Google Scholar 

  26. Li X, Zhao Z. Facile ionic-liquid-assisted electrochemical synthesis of size-controlled carbon quantum dots by tuning applied voltages. RSC Adv. 2014;101(4):57615–9.

    Article  Google Scholar 

  27. Wang YH, Zhang C, Chen XC, Yang B, Yang L, Jiang CL, et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale. 2016;00:1–3.

    Google Scholar 

  28. Bai WJ, Zheng ZH, Long YJ, Mao XJ, Gao M, Zheng LY. A carbon dots-based fluorescence turn-on method for DNA determination. Anal Sci. 2011;27:243–6.

    Article  CAS  Google Scholar 

  29. Callan JF, Mulrooney RC, Kamila S. Luminescent detection of ATP in aqueous solution using positively charged CdSe-ZnS quantum dots. J Fluoresc. 2008;18(6):1157–61.

    Article  CAS  Google Scholar 

  30. Lee JH, Choi YS, Kim JW, Park EJ, Song R. Positively charged compact quantum dot–DNA complexes for detection of nucleic acids. Chem Phys Chem. 2009;10:806–11.

    Article  CAS  Google Scholar 

  31. Liu YS, Zhao YN, Zhang YY. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors Actuators B. 2014;196:647–52.

    Article  CAS  Google Scholar 

  32. Yang M, Li H, Liu J, Kong WQ, Zhao SY, Li CX, et al. Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. J Mater Chem B. 2014;45(2):7964–70.

    Article  Google Scholar 

  33. Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Optical biosensing system for the detection of survivin mRNA in colorectal cancer cells using a graphene oxide carrier-bound oligonucleotide molecular beacon. Nanomaterials. 2018;8:510.

    Article  Google Scholar 

  34. Li XG, Wu XM, Zhang F, Zhao B, Li Y. Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta. 2019;195(1):372–80.

    Article  CAS  Google Scholar 

  35. Liu PF, Liu D, Liu YH, Li L. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid. J. Sol State Chem. 2016;241:164–72.

    Article  CAS  Google Scholar 

  36. Gujska E, Kuncewicz A. Determination of folate in some cereals and commercial cereal-grain products consumed in Poland using trienzyme extraction and high performance liquid chromatography methods. Eur Food Res Technol. 2005;221(1–2):208–13.

    Article  CAS  Google Scholar 

  37. Uysal UD, Oncu-Kaya EM, Tuncel M. Determination of folic acid by CE in various cultivated variety of lentils. Chromatographia. 2010;71(7–8):653–8.

    Article  CAS  Google Scholar 

  38. Wang M, Jiao Y, Cheng CS, Hua JH, Yang YL. Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem. 2017;409(30):7063–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by “The National Key R&D Program of China” (No. 2016YFD0401202) and the Special Project of Tianjin Innovation Platform (No. 17PTGCCX00230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, S. & Wang, J. Detection and quantification of folic acid in serum via a dual-emission fluorescence nanoprobe. Anal Bioanal Chem 411, 7481–7487 (2019). https://doi.org/10.1007/s00216-019-02121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02121-5

Keywords

Navigation