Skip to main content
Log in

Magnetic Cu/Fe3O4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The convenience of colorimetric sensors is useful for practical applications. In this work, we constructed a novel colorimetric sensor with magnetic separation ability that can be operated in nearly neutral conditions and achieve one-step detection of metabolites. Magnetic Cu doped Fe3O4@FeOOH magnetic nanocomposite (Cu/Fe3O4@FeOOH) with an oxygen vacancy was prepared by a one-step self-assembly hydrothermal method, and fully characterized by different methods. The oxygen vacancy generated by the incorporation of Cu2+ cations into the Fe3O4@FeOOH structure was confirmed to be a vital reactive site for enhancing the catalytic activity, which opens up a new way of designing highly efficient enzyme mimics. Benefiting from its inherent horseradish-peroxidase-like activity, a simple and selective enzyme-based colorimetric sensor was developed for one-step detection of H2O2 and cholesterol, and 3,3′,5,5′-tetramethylbenzidine was catalyzed by H2O2 to generate a colored product of oxidized 3,3′,5,5′-tetramethylbenzidine for signaling. H2O2 and cholesterol can be linearly detected in the same range from 0.01 to 0.4 mmol L-1 with detection limits of 0.0075 mmol L-1 and 0.0082 mmol L-1, respectively. The proposed colorimetric sensor has satisfactory reusability, accuracy, and practicability in human serum samples, indicating its potential application for the detection of different metabolites in the fields of life science and analytical science.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, et al. A Ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces. 2017;9:33011–9.

    Article  CAS  PubMed  Google Scholar 

  2. Pang P, Zhang Y, Ge S, Cai Q, Yao S, Grimes CA. Determination of glucose using bienzyme layered assembly magnetoelastic sensing device. Sensors Actuators B Chem. 2009;136:310–4.

    Article  CAS  Google Scholar 

  3. Sun H, Zhou Y, Ren J, Qu X. Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed. 2018;57:9224–37.

    Article  CAS  Google Scholar 

  4. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article  CAS  PubMed  Google Scholar 

  5. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trends Anal Chem. 2018;105:218–24.

    Article  CAS  Google Scholar 

  7. Ding N, Yan N, Ren C, Chen X. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system. Anal Chem. 2010;82:5897–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    Article  CAS  PubMed  Google Scholar 

  9. Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, et al. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem. 2018;259:775–83.

    Article  CAS  Google Scholar 

  10. Liu H, Ma H, Xu H, Wen J, Huang Z, Qiu Y, et al. Hollow and porous nickel sulfide nanocubes prepared from a metal-organic framework as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Anal Bioanal Chem. 2019;411:129–37.

    Article  CAS  PubMed  Google Scholar 

  11. Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors Actuators B Chem. 2015;218:42–50.

    Article  CAS  Google Scholar 

  12. Wang Y-M, Liu J-W, Jiang J-H, Zhong W. Cobalt oxyhydroxide nanoflakes with intrinsic peroxidase catalytic activity and their application to serum glucose detection. Anal Bioanal Chem. 2017;409:4225–32.

    Article  CAS  PubMed  Google Scholar 

  13. Chen M, Ding Y, Gao Y, Zhu X, Wang P, Shi Z, et al. N,N′-Di-caboxy methyl perylene diimide (PDI) functionalized CuO nanocomposites with enhanced peroxidase-like activity and their application in visual biosensing of H2O2 and glucose. RSC Adv. 2017;7:25220–8.

    Article  CAS  Google Scholar 

  14. Lin T, Qin Y, Huang Y, Yang R, Hou L, Ye F, et al. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem Commun. 2018;54:1762–5.

    Article  CAS  Google Scholar 

  15. Tao Y, Ju E, Ren J, Qu X. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater. 2015;27:1097–104.

    Article  CAS  PubMed  Google Scholar 

  16. Han L, Li C, Zhang T, Lang Q, Liu A. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl Mater Interfaces. 2015;7:14463–70.

    Article  CAS  PubMed  Google Scholar 

  17. Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11:5558–66.

    Article  CAS  PubMed  Google Scholar 

  18. Li N, Than A, Wang X, Xu S, Sun L, Duan H, et al. Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano. 2016;10:3622–9.

    Article  CAS  PubMed  Google Scholar 

  19. Valekar AH, Batule BS, Kim MI, Choa K-H, Hong D-Y, Lee U-H, et al. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens Bioelectron. 2018;100:161–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lin T, Zhong L, Chen H, Li Z, Song Z, Guo L, et al. A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets. Microchim Acta. 2017;184:1233–7.

    Article  CAS  Google Scholar 

  21. Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7:3207–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin H, Tian X, Nie Y, Zhou Z, Yang C, Li Y, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite. Environ Sci Technol. 2017;51:12699–706.

    Article  CAS  PubMed  Google Scholar 

  23. Chang HC, Ho JA. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem. 2015;87:10362–7.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron. 2018;102:560–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wang C, Li Q, Wang F, Xia G, Liu R, Li D, et al. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl Mater Interfaces. 2014;6:1243–50.

    Article  CAS  PubMed  Google Scholar 

  26. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2013;85:308–12.

    Article  CAS  PubMed  Google Scholar 

  27. Ou P, Xu G, Ren Z, Hou X, Han G. Hydrothermal synthesis and characterization of uniform α-FeOOH nanowires in high yield. Mater Lett. 2008;62:914–7.

    Article  CAS  Google Scholar 

  28. Wang S, Xu D, Ma L, Qiu J, Wang X, Dong Q, et al. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal Bioanal Chem. 2018;410:7145–52.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Ding Y-N, Yang B, Liu Z, Zhang X, Liu Q. Iron doped CuSn(OH)6 microspheres as a peroxidase-mimicking artificial enzyme for H2O2 colorimetric detection. ACS Sustain Chem Eng. 2018;6:14383–93.

    Article  CAS  Google Scholar 

  30. O'Neill L, Johnston C, Grant PS. Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J Power Sources. 2015;274:907–15.

    Article  CAS  Google Scholar 

  31. Galtayries A, Bonnelle J-P. XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2Oand CuO surfaces. Surf Interface Anal. 1995;23:171–9.

    Article  CAS  Google Scholar 

  32. Mesquita AM, Guimarães IR, de Castro GMM, Gonçalves MA, Ramalho TC, Guerreiro MC. Boron as a promoter in the goethite (α-FeOOH) phase: organic compound degradation by Fenton reaction. Appl Catal B Environ. 2016;192:286–95.

    Article  CAS  Google Scholar 

  33. Tian X, Jin H, Nie Y, Zhou Z, Yang C, Li Y, et al. Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide. Chem Eng J. 2017;328:397–405.

    Article  CAS  Google Scholar 

  34. Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, et al. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018;11:3509–18.

    Article  CAS  Google Scholar 

  35. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55:5277–81.

    Article  CAS  Google Scholar 

  36. Li D, Li K, Xu R, Wang H, Tian D, Wei Y, et al. Ce1-xFexO2-δ catalysts for catalytic methane combustion: role of oxygen vacancy and structural dependence. Catal Today. 2018;318:73–85.

    Article  CAS  Google Scholar 

  37. Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun. 2014;50:1092–4.

    Article  CAS  Google Scholar 

  38. Li L, Li P, Wang Y, Lin L, Shah AH, He T. Modulation of oxygen vacancy in hydrangea-like ceria via Zr doping for CO2 photoreduction. Appl Surf Sci. 2018;452:498–506.

    Article  CAS  Google Scholar 

  39. Sun M, Li W, Zhang B, Cheng G, Lan B, Ye F, et al. Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chem Eng J. 2018;331:626–35.

    Article  CAS  Google Scholar 

  40. Arciga-Duran E, Meas Y, Pérez-Bueno JJ, Ballesteros JC, Trejo G. Effect of oxygen vacancies in electrodeposited NiO towards the oxygen evolution reaction: role of Ni-glycine complexes. Electrochim Acta. 2018;268:49–58.

    Article  CAS  Google Scholar 

  41. Ding Y, Zhu L, Wang N, Tang H. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B Environ. 2013;129:153–62.

    Article  CAS  Google Scholar 

  42. Buxton GV, Greenstock CL, Helman WP, Ross AB. Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data. 1988;17:513–886.

    Article  CAS  Google Scholar 

  43. Zhou Y, Ding J, Liang T, Abdel-Halim ES, Jiang L, Zhu JJ. FITC doped rattle-type silica colloidal particle-based ratiometric fluorescent sensor for biosensing and imaging of superoxide anion. ACS Appl Mater Interfaces. 2016;8:6423–30.

    Article  CAS  PubMed  Google Scholar 

  44. Lu N, Zhang M, Ding L, et al. Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale. 2017;9:4508–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (21765002), the Guangxi Natural Science Foundation of China (2017GXNSFDA198044), the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2017-A10, CMEMR2018-C11), the Key Project of Guangxi Normal University (2017ZD003), and the BAGUI Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianran Lin or Fanggui Ye.

Ethics declarations

The study was approved by the Ethics Committee of Guangxi Normal University and was performed in accordance with its ethical standards. Informed consent was obtained from all individual participants before the testing of serum samples obtained from Guilin Hospital of Chinese Traditional and Western Medicine.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3.63 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liang, G., Lin, T. et al. Magnetic Cu/Fe3O4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing. Anal Bioanal Chem 411, 3801–3810 (2019). https://doi.org/10.1007/s00216-019-01841-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01841-y

Keywords

Navigation