Skip to main content
Log in

Determination of cocaine adulterants in human urine by dispersive liquid-liquid microextraction and high-performance liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to determine simultaneously five major street cocaine adulterants (caffeine, lidocaine, phenacetin, diltiazem, and hydroxyzine) in human urine by dispersive liquid-liquid microextraction (DLLME) and high-performance liquid chromatography. The chromatographic separation was obtained in gradient elution mode using methanol:water plus trifluoroacetic acid 0.15% (v/v) (pH = 1.9) at 1 mL min−1 as mobile phase, at 25 °C, detection at 235 nm, and analysis time of 20 min. The effect of major DLLME operating parameters on extraction efficiency was explored using the multifactorial experimental design approach. The optimum extraction condition was set as 4 mL human urine sample alkalized with 0.5 M sodium phosphate buffer (pH 12), NaCl (15%, m/v), 300 μL acetonitrile (dispersive solvent), and 800 μL chloroform (extraction solvent). Linear response (r2 ≥ 0.99) was obtained in the range of 180–1500 ng mL−1 with suitable selectivity, quantification limit (180 ng mL−1), mean recoveries (33.43–76.63%), and showing relative standard deviation and error (within and between-day assays) ≤15%. The analytes were stable after a freeze-thaw cycle and a short-term room temperature stability test. This method was successfully applied in real samples of cocaine users, suggesting that our study may contribute to the appropriate treatment of cocaine dependence or with the cases of cocaine acute intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurowska-Susdorf A, Zwierzdzynski M, Bevanda AM, Talic S, Ivankovic A, Płotka-Wasylka J. Green analytical chemistry: social dimension and teaching. Trends Anal Chem. 2019;111:185–96. https://doi.org/10.1016/j.trac.2018.10.022.

    Article  CAS  Google Scholar 

  2. Filippou O, Bitas D, Samanidou V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J Chromatogr B. 2017;1043:44–62. https://doi.org/10.1016/j.jchromb.2016.08.040.

    Article  CAS  Google Scholar 

  3. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1–9. https://doi.org/10.1016/j.chroma.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  4. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8. https://doi.org/10.1021/ac00218a019.

    Article  CAS  Google Scholar 

  5. de Santana FJM, Bonato PS. Enantioselective analysis of mirtazapine and its two major metabolites in human plasma by liquid chromatography–mass spectrometry after three-phase liquid-phase microextraction. Anal Chim Acta. 2008;606:80–91. https://doi.org/10.1016/j.aca.2007.10.037.

    Article  CAS  PubMed  Google Scholar 

  6. Primel EG, Caldas SS, Marube LC, Escarrone ALV. An overview of advances in dispersive liquid-liquid microextraction for the extraction of pesticides and emerging contaminants from environmental samples. Trends Environ Anal Chem. 2017;14:1–18. https://doi.org/10.1016/j.teac.2017.03.001.

    Article  CAS  Google Scholar 

  7. Al-Saidi HM, Emara AAA. The recent developments in dispersive liquid-liquid microextraction for preconcentration and determination of inorganic analytes. J Saudi Chem Soc. 2014;18(6):745–61. https://doi.org/10.1016/j.jscs.2011.11.005.

    Article  Google Scholar 

  8. Viñas P, Campillo N, López-García I, Hernández-Córdoba M. Dispersive liquid-liquid microextraction in food analysis. A critical review. Anal Bioanal Chem. 2014;406(8):2067–99. https://doi.org/10.1007/s00216-013-7344-9.

    Article  CAS  Google Scholar 

  9. Mansour FR, Khairy MA. Pharmaceutical and biomedical applications of dispersive liquid-liquid microextraction. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1061-1062:382–91. https://doi.org/10.1016/j.jchromb.2017.07.055.

    Article  CAS  Google Scholar 

  10. Viñas P, Campillo N, Pastor-Belda M, Oller A, Hernández-Córdoba M. Determination of phthalate esters in cleaning and personal care products by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2015;1376:18–25. https://doi.org/10.1016/j.chroma.2014.12.012.

    Article  CAS  PubMed  Google Scholar 

  11. Zuloaga O, Olivares M, Navarro P, Vallejo A, Prieto A. Dispersive liquid-liquid microextraction: trends in the analysis of biological samples. Bioanalysis. 2015;7(17):2211–25. https://doi.org/10.4155/bio.15.141.

    Article  CAS  PubMed  Google Scholar 

  12. Fisichella M, Odoardi S, Strano-Rossi S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem J. 2015;123:33–41. https://doi.org/10.1016/j.microc.2015.05.009.

    Article  CAS  Google Scholar 

  13. Kohler I, Schappler J, Sierro T, Rudaz S. Dispersive liquid-liquid microextraction combined with capillary electrophoresis and time-of-flight mass spectrometry for urine analysis. J Pharm Biomed Anal. 2013;73:82–9. https://doi.org/10.1016/j.jpba.2012.03.036.

    Article  CAS  PubMed  Google Scholar 

  14. Mercieca G, Odoardi S, Cassar M, Strano RS. Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC-MS. J Pharm Biomed Anal. 2018;149:494–501. https://doi.org/10.1016/j.jpba.2017.11.024.

    Article  CAS  PubMed  Google Scholar 

  15. Sena LC, Matos HR, Dórea HS, Pimentel MF, de Santana DC, de Santana FJM. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and high-performance liquid chromatography to the analysis of cocaine’s major adulterants in human urine. Toxicology. 2017;376:102–12. https://doi.org/10.1016/j.tox.2016.04.008.

    Article  CAS  PubMed  Google Scholar 

  16. Solimini R, Rotolo MC, Pellegrini M, Minutillo A, Pacifici R, Busardò FP, et al. Adulteration practices of psychoactive illicit drugs: an updated review. Curr Pharm Biotechnol. 2017;18(7):524–30. https://doi.org/10.2174/1389201018666170710184531.

    Article  CAS  PubMed  Google Scholar 

  17. Lapachinske SF, Okai GG, Santos A, Bairros AV, Yonamine M. Analysis of cocaine and its adulterants in drugs for international trafficking seized by the Brazilian Federal Police. Forensic Sci Int. 2015;247:48–53. https://doi.org/10.1016/j.forsciint.2014.11.028.

    Article  CAS  PubMed  Google Scholar 

  18. Maldaner AO, Botelho ED, Zacca JJ, Camargo MA, Braga JW, Grobério TS. Brazilian Federal District cocaine chemical profiling - mass balance approach and new adulterant routinely quantified (aminopyrine). J Braz Chem Soc. 2015;26(6):1227–31. https://doi.org/10.5935/0103-5053.20150088.

    Article  CAS  Google Scholar 

  19. Botelho ED, Cunha RB, Campos AFC, Maldaner AO. Chemical profiling of cocaine seized by Brazilian Federal Police in 2009-2012: major components. J Braz Chem Soc. 2014;25(4):611–8. https://doi.org/10.5935/0103-5053.20140008.

    Article  CAS  Google Scholar 

  20. Brunt TM, Rigter S, Hoek J, Vogels N, Van Dijk P, Niesink RJ. An analysis of cocaine powder in the Netherlands: content and health hazards due to adulterants. Addiction. 2009;104(5):798–805. https://doi.org/10.1111/j.1360-0443.2009.02532.x.

    Article  PubMed  Google Scholar 

  21. Evrard I, Legleye S, Cadet-Taïroua A. Composition, purity and perceived quality of street cocaine in France. Int J Drug Policy. 2010;21:399–406. https://doi.org/10.1016/j.drugpo.2010.03.004.

    Article  PubMed  Google Scholar 

  22. Broséus J, Gentile N, Bonadio PF, Garcia GJM, Gasté L, Esseiva P. Qualitative, quantitative and temporal study of cutting agents for cocaine and heroin over 9 years. Forensic Sci Int. 2015;257:307–13. https://doi.org/10.1016/j.forsciint.2015.09.014.

    Article  CAS  PubMed  Google Scholar 

  23. Souied O, Baydoun H, Ghandour Z, Mobarakai N. Levamisole-contaminated cocaine: an emergent cause of vasculitis and skin necrosis. Case Rep Med. 2014;2014:1–3. https://doi.org/10.1155/2014/434717.

    Article  Google Scholar 

  24. Abin-Carriquiry JA, Martínez-Busi M, Galvalisi M, Minteguiaga M, Prieto JP, Scorza MC. Identification and quantification of cocaine and active adulterants in coca-paste seized samples: useful scientific support to health care. Neurotox Res. 2018;34:295–304. https://doi.org/10.1007/s12640-018-9887-1.

    Article  CAS  PubMed  Google Scholar 

  25. Katselou M, Athanaselis S, Nikolaou P, Dona A, Spiliopoulou C, Papoutsis I. Development and validation of a GC-MS method for the determination of hydroxyzine and its active metabolite, cetirizine, in whole blood. J Pharm Biomed Anal. 2017;25(145):765–72. https://doi.org/10.1016/j.jpba.2017.07.059.

    Article  CAS  Google Scholar 

  26. Saluti G, Giusepponi D, Moretti S, Di Salvo A, Galarini R. Flexible method for analysis of lidocaine and its metabolite in biological fluids. J Chromatogr Sci. 2016;54(7):1193–200. https://doi.org/10.1093/chromsci/bmw051.

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Li CL, Lu NW, Dong YM. A novel micellar per aqueous liquid chromatographic method for simultaneous determination of diltiazem hydrochloride, metoprolol tartrate and isosorbide mononitrate in human serum. J Chromatogr B Anal Technol Biomed Life Sci. 2014;15(967):90–7. https://doi.org/10.1016/j.jchromb.2014.07.019.

    Article  CAS  Google Scholar 

  28. Jafari MT, Rezaei B, Javaheri M. A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. Food Chem. 2011;126(4):1964–70. https://doi.org/10.1016/j.foodchem.2010.12.054.

    Article  CAS  PubMed  Google Scholar 

  29. Knuth M, Temme O, Daldrup T, Pawlik E. Analysis of cocaine adulterants in human brain in cases of drug-related death. Forensic Sci Int. 2018;285:86–92. https://doi.org/10.1016/j.forsciint.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  30. Mahler EPH, Hartung B, Plässer G, Daldrup T. Drug-related death: adulterants from cocaine preparations in lung tissue and blood. Forensic Sci Int. 2015;249:294–303. https://doi.org/10.1016/j.forsciint.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  31. U.S. Department of Health and Human Services. Food and Drug Administration (FDA). Center for Drug Evaluation and Research (CDER). Center for Veterinary Medicine (CVM). Guidance for industry: bioanalytical method validation. Bio pharmaceutics: Rockville. United States of America. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research. Center for Veterinary Medicine; 2018. 44 p.

  32. Brasil. Agência Nacional de Vigilância Sanitária. Resolução n° 899 de 29 de maio de 2013. Determina a publicação do “Guia para validação de métodos analíticos e bioanalíticos” e revoga a Resolução RE n° 475, de 19 de março de 2002. Diário Oficial da União, Poder Executivo, Brasília, DF, 02 de fevereiro de 2003. Seção 1, p. 18221.

  33. Emídio ES, de Menezes Prata V, de Santana FJ, Dórea HS. Hollow fiber-based liquid phase microextraction with factorial design optimization and gas chromatography-tandem mass spectrometry for determination of cannabinoids in human hair. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(24):2175–83. https://doi.org/10.1016/j.jchromb.2010.06.005.

    Article  CAS  Google Scholar 

  34. Bianchi F, Careri M. Experimental design techniques for optimization of analytical methods. Part I: separation and sample preparation techniques. Curr Anal Chem. 2008;4(1):55–74. https://doi.org/10.2174/157341108783339070.

    Article  CAS  Google Scholar 

  35. Ahmadi-Jouibari T, Fattahi N, Shamsipur M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid–liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography. J Pharm Biomed Anal. 2014;94:145–51. https://doi.org/10.1016/j.jpba.2014.01.044.

    Article  CAS  PubMed  Google Scholar 

  36. Jouyban A, Sorouraddin MH, Farajzadeh MA, Somi MH, Fazeli-Bakhtiyari R. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Talanta. 2015;134:681–9. https://doi.org/10.1016/j.talanta.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  37. Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31. https://doi.org/10.1039/C3AY41907J.

    Article  CAS  Google Scholar 

  38. Martins AF, Dos Santos JB, Todeschini BH, Saldanha LF, da Silva DS, Reichert JF, et al. Occurrence of cocaine and metabolites in hospital effluent - a risk evaluation and development of a HPLC method using DLLME. Chemosphere. 2017;170:176–82. https://doi.org/10.1016/j.chemosphere.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  39. Prieto JP, Galvalisi M, López-Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C. Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict. 2015;24:475–81. https://doi.org/10.1111/ajad.12245.

    Article  PubMed  Google Scholar 

  40. Prieto JP, Scorza C, Serra GP, Perra V, Galvalisi M, Abin-Carriquiry JA, et al. Caffeine, a common active adulterant of cocaine, enhances the reinforcing effect of cocaine and its motivational value. Psychopharmacology (Berl). 2016;233(15–16):2879–89. https://doi.org/10.1007/s00213-016-4320-z.

    Article  CAS  Google Scholar 

  41. Kudlacek O, Hofmaier T, Luf A, Mayer FP, Stockner T, Nagy C, et al. Cocaine adulteration. J Chem Neuroanat. 2017;83-84:75–81. https://doi.org/10.1016/j.jchemneu.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

  42. Pereira RA, Souza AM, Duffey KJ, Sichieri R, Popkin BM. Beverages consumption in Brazil: results from the first National Dietary Survey. Public Health Nutr. 2015;18(7):1164–72. https://doi.org/10.1017/S1368980014001657.

    Article  PubMed  Google Scholar 

  43. Billman GE. Effect of calcium-channel antagonists on cocaine-induced malignant arrhythmias: protection against ventricular fibrillation. J Pharmacol Exp Ther. 1993;266(1):407–16.

    CAS  PubMed  Google Scholar 

  44. Ibrahim M, Maselli DJ, Hasan R. Safety of beta-blockers in the acute management of cocaine-associated chest pain. Am J Emerg Med. 2013;31(6):989. https://doi.org/10.1016/j.ajem.2012.09.027.

    Article  PubMed  Google Scholar 

  45. Pea F. β-Blockers and diltiazem combination-bear in mind the risk of heart block. JAMA Intern Med. 2017;177(10):1543–4. https://doi.org/10.1001/jamainternmed.2017.4765.

    Article  PubMed  Google Scholar 

  46. Broséus J, Gentile N, Esseiva P. The cutting of cocaine and heroin: a critical review. Forensic Sci Int. 2016;262:73–83. https://doi.org/10.1016/j.forsciint.2016.02.033.

    Article  CAS  PubMed  Google Scholar 

  47. Barat SA, Abdel-Rahman MS. Cocaine and lidocaine in combination are synergistic convulsants. Brain Res. 1996;742(1–2):157–62. https://doi.org/10.1016/S0006-8993(96)01004-9.

    Article  CAS  PubMed  Google Scholar 

  48. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89:1363–72. https://doi.org/10.1136/heart.89.11.1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Redfern WS, Carlsson L, Davis AS, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45. https://doi.org/10.1016/S0008-6363(02)00846-5.

    Article  CAS  PubMed  Google Scholar 

  50. Molina K, Hargrove VM. Fatal cocaine interactions: a review of cocaine-related deaths in Bexar County, Texas. Am J Forensic Med Pathol. 2011;32(1):71–7. https://doi.org/10.1097/PAF.0b013e3181ed79fe.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CAPS-AD Eulâmpio Cordeiro, its members, and each person who provided the samples for this study. Additionally, the authors are grateful to CNPq (Brazilian National Council for Scientific and Technological Development) and FACEPE (State of Pernambuco Science and Technology Support Foundation) for granting a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando José Malagueño de Santana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.R., Sena, L.C.S., Silva, R.P.L. et al. Determination of cocaine adulterants in human urine by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Anal Bioanal Chem 411, 3447–3461 (2019). https://doi.org/10.1007/s00216-019-01797-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01797-z

Keywords

Navigation