Skip to main content
Log in

Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Atomically precise noble metal nanoclusters with ultrasmall physical sizes in the subnanometer range have emerged as a new class of probing fluorophores and have attracted considerable research interest because of their intrinsic physical, chemical, optical, biological, and electrical properties, such as stability, biocompatibility, and molecule-like photoluminescence. In comparison with traditional fluorophores such as organic dyes and quantum dots, noble metal nanoclusters have significant advantages, including low toxicity toward the environment and biological tissues, high stability when exposed to irradiation, and small size, that make them more suitable for biological sensing or biological labeling applications. Several reviews have summarized the fabrication of noble metal nanoclusters, including gold, silver, copper, and bimetallic nanoclusters. However, these reviews focused either on various facile preparation methods or multidisciplinary application areas. Here, we focus on the application of noble metal nanoclusters as optical sensing materials for toxic metal ions, including new synthetic approaches and discussion of the detection mechanism. We briefly summarize the development of metal cation monitoring technology that uses ultrasmall nanoclusters as the sensing probes. We also provide a fresh opinion on research expectations in the field of inorganic nanoscience and nanotechnology Finally, perspectives for future research hot topics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang LB, Wang EK. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–57.

    Article  CAS  Google Scholar 

  2. Jin RC. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7:1549–65.

    Article  CAS  Google Scholar 

  3. Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev. 2014;114:4564–601.

    Article  CAS  Google Scholar 

  4. Koneswaran M, Narayanaswamy R. l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens Actuators B. 2009;139:104–9.

    Article  CAS  Google Scholar 

  5. Campos BB, Algarra M, Alonso B, Casado CM, da Silva JCGE. Mercury(II) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites. Analyst. 2009;134:2447–52.

    Article  CAS  Google Scholar 

  6. Bin Shang Z, Wang Y, Jin WJ. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta. 2009;78:364–9.

    Article  CAS  Google Scholar 

  7. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review. Environ Pollut. 1997;98:29–36.

    Article  CAS  Google Scholar 

  8. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharm. 2009;238:209–14.

    Article  CAS  Google Scholar 

  9. Lara R, Cerutti S, Salonia JA, Olsina RA, Martinez LD. Trace element determination of Argentine wines using ETAAS and USN-ICP-OES. Food Chem Toxicol. 2005;43:293–7.

    Article  CAS  Google Scholar 

  10. Korn MDA, de Andrade JB, de Jesus DS, Lemos VA, Bandeira MLSF, dos Santos WNL, et al. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: a review. Talanta. 2006;69:16–24.

    Article  CAS  Google Scholar 

  11. Wei BG, Yang LS. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94:99–107.

    Article  CAS  Google Scholar 

  12. Ikem A, Nwankwoala A, Odueyungbo S, Nyavor K, Egiebor N. Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES. Food Chem. 2002;77:439–47.

    Article  CAS  Google Scholar 

  13. Moldovan M, Krupp EM, Holliday AE, Donard OFX. High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: a review. J Anal At Spectrom. 2004;19:815–22.

    Article  CAS  Google Scholar 

  14. Dressler VL, Antes FG, Moreira CM, Pozebon D, Duarte FA. As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: a review. Int J Mass Spectrom. 2011;307:149–62.

    Article  CAS  Google Scholar 

  15. Ortner HM, Bulska E, Rohr U, Schlemmer G, Weinbruch S, Welz B. Modifiers and coatings in graphite furnace atomic absorption spectrometry-mechanisms of action (a tutorial review). Spectrochim Acta B. 2002;57:1835–53.

    Article  Google Scholar 

  16. Resano M, Vanhaecke F, de Loos-Vollebregt MTC. Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry-a critical review with focus on solid sampling and slurry analysis. J Anal At Spectrom. 2008;23:1450–75.

    Article  CAS  Google Scholar 

  17. Tuzen M. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem. 2003;80:119–23.

    Article  CAS  Google Scholar 

  18. West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wegrzynek D, et al. 2013 Atomic spectrometry update – a review of advances in X-ray fluorescence spectrometry. J Anal At Spectrom. 2013;28:1544–90.

    Article  CAS  Google Scholar 

  19. Ma J, Sengupta MK, Yuan DX, Dasgupta PK. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods. Anal Chim Acta. 2014;831:1–23.

    Article  CAS  Google Scholar 

  20. Liu R, Wu P, Yang L, Hou XD, Lv Y. Inductively coupled plasma mass spectrometry-based immunoassay: a review. Mass Spectrom Rev. 2014;33:373–93.

    Article  CAS  Google Scholar 

  21. West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wobrauschek P. 2014 atomic spectrometry update - a review of advances in X-ray fluorescence spectrometry. J Anal At Spectrom. 2014;29:1516–63.

    Article  CAS  Google Scholar 

  22. Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev. 2014;114:8499–541.

    Article  CAS  Google Scholar 

  23. West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wobrauschek P. 2016 atomic spectrometry update - a review of advances in X-ray fluorescence spectrometry and its applications. J Anal At Spectrom. 2016;31:1706–55.

    Article  CAS  Google Scholar 

  24. De La Calle I, Cabaleiro N, Romero V, Lavilla I, Bendicho C. Sample pretreatment strategies for total reflection X-ray fluorescence analysis: a tutorial review. Spectrochim Acta B. 2013;90:23–54.

    Article  CAS  Google Scholar 

  25. Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E, Durrant JR, Vilar R, et al. Reversible colorimetric probes for mercury sensing. J Am Chem Soc. 2005;127:12351–6.

    Article  CAS  Google Scholar 

  26. Metivier R, Leray I, Valeur B. Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores, Chem. Eur J. 2004;10:4480–90.

    Article  CAS  Google Scholar 

  27. Tatay S, Gavina P, Coronado E, Palomares E. Optical mercury sensing using a benzothiazolium hemicyanine dye. Org Lett. 2006;8:3857–60.

    Article  CAS  Google Scholar 

  28. Pandey S, Azam A, Pandey S, Chawla HM. Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing. Org Biomol Chem. 2009;7:269–79.

    Article  CAS  Google Scholar 

  29. Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed. 2004;43:4300–2.

    Article  CAS  Google Scholar 

  30. Sheng RL, Wang PF, Liu WM, Wu XH, Wu SK. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sens Actuators B. 2008;128:507–11.

    Article  CAS  Google Scholar 

  31. Hu B, Hu LL, Chen ML, Wang JH, FRET A. ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron. 2013;49:499–505.

    Article  CAS  Google Scholar 

  32. Xia YS, Zhu CQ. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta. 2008;75:215–21.

    CAS  Google Scholar 

  33. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, et al. Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem. 2014;86:10955–60.

    Article  CAS  Google Scholar 

  34. Lin CY, Yu CJ, Lin YH, Tseng WL. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem. 2010;82:6830–7.

    Article  CAS  Google Scholar 

  35. Ahmed KBA, Senthilnathan R, Megarajan S, Anbazhagan V. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. J Photochem Photobiol B. 2015;151:39–45.

    Article  CAS  Google Scholar 

  36. Xu XW, Wang J, Jiao K, Yang XR. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens Bioelectron. 2009;24:3153–8.

    Article  CAS  Google Scholar 

  37. Jin RC. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale. 2010;2:343–62.

    Article  CAS  Google Scholar 

  38. Xu HX, Suslick KS. Water-soluble fluorescent silver nanoclusters. Adv Mater. 2010;22:1078–82.

    Article  CAS  Google Scholar 

  39. Diez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale. 2011;3:1963–70.

    Article  CAS  Google Scholar 

  40. Goswami N, Luo ZT, Yuan X, Leong DT, Xie JP. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater Horiz. 2017;4:817–31.

    Article  CAS  Google Scholar 

  41. Fang J, Zhang B, Yao QF, Yang Y, Xie JP, Yan N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev. 2016;322:1–29.

    Article  CAS  Google Scholar 

  42. Heiligtag FJ, Niederberger M. The fascinating world of nanoparticle research. Mater Today. 2013;16:262–71.

    Article  CAS  Google Scholar 

  43. Luo ZT, Nachammai V, Zhang B, Yan N, Leong DT, Jiang DE, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au-25 nanoclusters. J Am Chem Soc. 2014;136:10577–80.

    Article  CAS  Google Scholar 

  44. Goswami N, Yao QF, Chen TK, Xie JP. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coord Chem Rev. 2016;329:1–15.

    Article  CAS  Google Scholar 

  45. Hu YH, Guo WJ, Wei H. Protein- and peptide-directed approaches to fluorescent metal nanoclusters. Isr J Chem. 2015;55:682–97.

    Article  CAS  Google Scholar 

  46. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA. Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol. 2005;39:1366–77.

    Article  CAS  Google Scholar 

  47. Ottaviani MF, Valluzzi R, Balogh L. Internal structure of silver-poly(amidoamine) dendrimer complexes and nanocomposites. Macromolecules. 2002;35:5105–15.

    Article  CAS  Google Scholar 

  48. Kavitha M, Parida MR, Prasad E, Vijayan C, Deshmukh PC. Generation of Ag nanoparticles by PAMAM dendrimers and their size dependence on the aggregation behavior of dendrimers. Macromol Chem Phys. 2009;210:1310–8.

    Article  CAS  Google Scholar 

  49. Zheng J, Dickson RM. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc. 2002;124:13982–3.

    Article  CAS  Google Scholar 

  50. Zheng J, Petty JT, Dickson RM. High quantum yield blue emission from water-soluble Au-8 nanodots. J Am Chem Soc. 2003;125:7780–1.

    Article  CAS  Google Scholar 

  51. Tanaka SI, Miyazaki J, Tiwari DK, Jin T, Inouye Y. Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging. Angew Chem Int Ed. 2011;50:431–5.

    Article  CAS  Google Scholar 

  52. Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi XY, Baker JR, et al. Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005;5:2123–30.

    Article  CAS  Google Scholar 

  53. Li GP, Luo YJ. Preparation and characterization of dendrimer-templated Ag-Cu bimetallic nanoclusters. Inorg Chem. 2008;47:360–4.

    Article  CAS  Google Scholar 

  54. Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F. Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology. 2006;17:3499–505.

    Article  CAS  Google Scholar 

  55. Shang L, Dong SJ. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun. 2008; 1088-1090.

  56. Shang L, Dong SJ. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem. 2008;18:4636–40.

    Article  CAS  Google Scholar 

  57. Zhang H, Huang X, Li L, Zhang GW, Hussain I, Li Z, et al. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem Commun. 2012;48:567–9.

    Article  CAS  Google Scholar 

  58. Huang X, Luo Y, Li Z, Li BY, Zhang H, Li L, et al. Biolabeling hematopoietic system cells using near-infrared fluorescent gold nanoclusters. J Phys Chem C. 2011;115:16753–63.

    Article  CAS  Google Scholar 

  59. Xu HX, Suslick KS. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano. 2010;4:3209–14.

    Article  CAS  Google Scholar 

  60. Chen YT, Yang TQ, Pan HF, Yuan YF, Chen L, Liu MW, et al. Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal-metal charge transfer vs strong coupling between surface plasmon and emitters. J Am Chem Soc. 2014;136:1686–9.

    Article  CAS  Google Scholar 

  61. Diez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, et al. Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed. 2009;48:2122–5.

    Article  CAS  Google Scholar 

  62. Diez I, Jiang H, Ras RHA. Enhanced emission of silver nanoclusters through quantitative phase transfer. Chemphyschem. 2010;11:3100–4.

    Article  CAS  Google Scholar 

  63. Raut S, Rich R, Akopova I, Thyrhaug E, Shtoyko T, Shumilov D, et al. Fluorescent polyelectrolyte capped silver nanoclusters: optimization and spectroscopic evaluation. Chem Phys Lett. 2012;549:72–6.

    Article  CAS  Google Scholar 

  64. Wang H, Li X, Gao L, Zhai J, Liu R, Gao XY, et al. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies. Nanoscale. 2016;8:11454–60.

    Article  CAS  Google Scholar 

  65. Xie JP, Zheng YG, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131:888–9.

    Article  CAS  Google Scholar 

  66. Hemmateenejad B, Shakerizadeh-shirazi F, Samari F. BSA-modified gold nanoclusters for sensing of folic acid. Sens Actuators B. 2014;199:42–6.

    Article  CAS  Google Scholar 

  67. Yue Y, Li HW, Liu TY, Wu YQ. Exploring the role of ligand-BSA in the response of BSA-protected gold-nanoclusters to silver (I) ions by FT-IR and circular dichroism spectra. Vib Spectrosc. 2014;74:137–41.

    Article  CAS  Google Scholar 

  68. Liu JM, Cui ML, Jiang SL, Wang XX, Lin LP, Jiao L, et al. BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Anal Methods. 2013;5:3942–7.

    Article  CAS  Google Scholar 

  69. Cui ML, Liu JM, Wang XX, Lin LP, Jiao L, Zheng ZY, et al. A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2-. Sens Actuators B. 2013;188:53–8.

    Article  CAS  Google Scholar 

  70. Yan L, Cai YQ, Zheng BZ, Yuan HY, Guo Y, Xiao D, et al. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem. 2012;22:1000–5.

    Article  CAS  Google Scholar 

  71. Gao Z, Su RX, Qi W, Wang LB, He ZM. Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff. Sens Actuators B. 2014;195:359–64.

    Article  CAS  Google Scholar 

  72. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010;10:3106–10.

    Article  CAS  Google Scholar 

  73. Walczak S, Morishita K, Ahmed M, Liu JW. Towards understanding of poly-guanine activated fluorescent silver nanoclusters. Nanotechnology. 2014;25

  74. Han S, Zhu SY, Liu ZY, Hu LZ, Parveen S, Xu GB. Oligonucleotide-stabilized fluorescent silver nanoclusters for turn-on detection of melamine. Biosens Bioelectron. 2012;36:267–70.

    Article  CAS  Google Scholar 

  75. Wang RZ, Zhou DL, Huang H, Zhang M, Feng JJ, Wang AJ. Water-soluble homo-oligonucleotide stabilized fluorescent silver nanoclusters as fluorescent probes for mercury ion. Microchim Acta. 2013;180:1287–93.

    Article  CAS  Google Scholar 

  76. Xie JP, Zheng YG, Ying JY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem Commun. 2010;46:961–3.

    Article  CAS  Google Scholar 

  77. Zhang Y, Yan MF, Jiang JJ, Gao PF, Zhang GM, Choi MMF, et al. Highly selective and sensitive nanoprobes for Hg(II) ions based on photoluminescent gold nanoclusters. Sens Actuators B. 2016;235:386–93.

    Article  CAS  Google Scholar 

  78. Zhao Q, Chen SN, Zhang LY, Huang HW, Zeng YL, Liu FP. Multiplex sensor for detection of different metal ions based on on-off of fluorescent gold nanoclusters. Anal Chim Acta. 2014;852:236–43.

    Article  CAS  Google Scholar 

  79. Huang CC, Yang Z, Lee KH, Chang HT. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed. 2007;46:6824–8.

    Article  CAS  Google Scholar 

  80. Yue Y, Liu TY, Li HW, Liu ZY, Wu YQ. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale. 2012;4:2251–4.

    Article  CAS  Google Scholar 

  81. Goswami N, Yao QF, Luo ZT, Li JG, Chen TK, Xie JP. Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7:962–75.

    Article  CAS  Google Scholar 

  82. Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc. 2012;134:16662–70.

    Article  CAS  Google Scholar 

  83. Yuan X, Luo ZT, Yu Y, Yao QF, Xie JP. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J. 2013;8:858–71.

    Article  CAS  Google Scholar 

  84. Song XR, Goswami N, Yang HH, Xie JP. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–40.

    Article  CAS  Google Scholar 

  85. Lan GY, Huang CC, Chang HT. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun. 2010;46:1257–9.

    Article  CAS  Google Scholar 

  86. Su YT, Lan GY, Chen WY, Chang HT. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem. 2010;82:8566–72.

    Article  CAS  Google Scholar 

  87. Durgadas CV, Sharma CP, Sreenivasan K. Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst. 2011;136:933–40.

    Article  CAS  Google Scholar 

  88. Lin ZJ, Luo FQ, Dong TQ, Zheng LY, Wang YX, Chi YW, et al. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution. Analyst. 2012;137:2394–9.

    Article  CAS  Google Scholar 

  89. Hu X, Wang W, Huang YM. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta. 2016;154:409–15.

    Article  CAS  Google Scholar 

  90. Li CY, Wei CY. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sens Actuators B. 2017;242:563–8.

    Article  CAS  Google Scholar 

  91. Zhang Y, Jiang JJ, Li M, Gao PF, Shi LH, Zhang GM, et al. Bright far-red/near-infrared gold nanoclusters for highly selective and ultra-sensitive detection of Hg2+. Sens Actuators B. 2017;238:683–92.

    Article  CAS  Google Scholar 

  92. Yu MQ, Zhu ZG, Wang H, Li LY, Fu F, Song Y, et al. Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions. Biosens Bioelectron. 2017;91:143–8.

    Article  CAS  Google Scholar 

  93. George A, Gopalakrishnan H, Mandal S. Surfactant free platinum nanocluster as fluorescent probe for the selective detection of Fe (III) ions in aqueous medium. Sens Actuators B. 2017;243:332–7.

    Article  CAS  Google Scholar 

  94. Su Y, Qi L, Mu XY, Wang ML. A fluorescent probe for sensing ferric ions in bean sprouts based on l-histidine-stabilized gold nanoclusters. Anal Methods. 2015;7:684–9.

    Article  CAS  Google Scholar 

  95. Huang H, Li H, Feng JJ, Wang AJ. One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+. Sens Actuators B. 2016;223:550–6.

    Article  CAS  Google Scholar 

  96. Cao HY, Chen ZH, Zheng HZ, Huang YM. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron. 2014;62:189–95.

    Article  CAS  Google Scholar 

  97. Zhang YY, Jiang H, Wang XM. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal Chim Acta. 2015;870:1–7.

    Article  CAS  Google Scholar 

  98. Lee J, Park J, Lee HH, Park H, Kim HI, Kim WJ. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters. Biosens Bioelectron. 2015;68:642–7.

    Article  CAS  Google Scholar 

  99. Niu WJ, Shan D, Zhu RH, Deng SY, Cosnier S, Zhang XJ. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon. 2016;96:1034–42.

    Article  CAS  Google Scholar 

  100. Bian RX, Wu XT, Chai F, Li L, Zhang LY, Wang TT, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+. Sens Actuators B. 2017;241:592–600.

    Article  CAS  Google Scholar 

  101. Wang CX, Wu JP, Jiang KL, Humphrey MG, Zhang C. Stable Ag nanoclusters-based nano-sensors: rapid sonochemical synthesis and detecting Pb2+ in living cells. Sens Actuators B. 2017;238:1136–43.

    Article  CAS  Google Scholar 

  102. Lin LY, Hu YF, Zhang LL, Huang Y, Zhao SL. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosens Bioelectron. 2017;94:523–9.

    Article  CAS  Google Scholar 

  103. Jaitovich A, Bertorello AM. Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta. 2010;1802:1140–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (31700746).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Dong, Biao Li or Xiaojun Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, G., Zhao, J., Chen, P. et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions. Anal Bioanal Chem 410, 2485–2498 (2018). https://doi.org/10.1007/s00216-017-0808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0808-6

Keywords

Navigation