Skip to main content
Log in

Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Retention indices (I) for 45 polycyclic aromatic hydrocarbons (PAHs) and 63 methyl-substituted PAHs were determined by gas chromatography – mass spectrometry (GC-MS) using two different stationary phases: a Rxi-PAH phase (a “higher phenyl-content stationary phase”) and a 50% (mole fraction) liquid crystalline dimethylpolysiloxane phase. Retention data were obtained for parent PAHs from molecular mass (MM) 128 g/mol (naphthalene) to 328 g/mol (benzo[c]picene) and for 12 sets of methyl-PAHs (methylfluorenes, methylanthracenes, methylphenanthrenes, methylfluoranthenes, methylpyrenes, methylbenz[a]anthracenes, methylbenzo[c]phenanthrenes, methylchrysenes, methyltriphenylenes, methylbenzo[a]pyrenes, methylperylenes, and methylpicenes). Molecular shape descriptors such as length-to-breath ratio (L/B) and thickness (T) were determined for all the PAHs studied. Correlation between I and L/B ratio was evaluated for both stationary phases with a better correlation observed for the 50% liquid crystalline phase (correlation coefficients ranging from 0.22 to 1.00).

GC separation of six methylchrysene isomers (m/z 242) on two different stationary phases: 50 % phenyl-like methylpolysiloxane phase and 50 % liquid crystalline phase. Retention indices (I) are plotted as a function of L/B for both phases. The data marker numbers identify each isomer based on methyl-substitution position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee ML, Vassilaros DL, White CM, Novotny M. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1979;51(6):768–73.

    Article  CAS  Google Scholar 

  2. Vassilaros DL, Kong RC, Later DW, Lee ML. Linear retention index system for polycyclic aromatic compounds: Critical evaluation and additional indexes. J Chromatogr A. 1982;252:1–20.

    Article  CAS  Google Scholar 

  3. Poster DL, Schantz MM, Sander LC, Wise SA. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem. 2006;386:859–81.

    Article  CAS  Google Scholar 

  4. Wise SA, Schantz MM, Sander LC. Analytical methods for determination of Polycyclic Aromatic Hydrocarbons (PAHs) – A historical perspective on the 16 U.S. EPA priority pollutants PAHs. Polycyclic Aromat Compd. 35:187–247.

  5. Maier E, Schimmel H, Hinschberger J, Griepink B, Jacob J. The certification of the content of Pyrene, Benz[a]anthracene, Benzo[a]pyrene, Benzo[e]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, and Benzo[b]naphtho[2,1-d]thiophene in dried sewage sludge CRM 088. (Brussels, Belgium: Commission of the European Communities, Community Bureau of Reference. 1994).

  6. Janini GM, Johnston K, Zielinski WL. Use of a nematic liquid crystal for gas-liquid chromatographic separation of polyaromatic hydrocarbons. Anal Chem. 1975;47:670–4.

    Article  CAS  Google Scholar 

  7. Radecki A, Lamparczyk H, Kaliszan R. A relationship between the retention indices on nematic and isotropic phases and the shape of polycyclic aromatic hydrocarbons. Chromatographia. 1979;12:595–9.

    Article  CAS  Google Scholar 

  8. Bradshaw JS, Schregenberger C, Chang KHC, Markides KE, Lee ML. Synthesis and chromatographic properties of polysiloxane stationary phases containing biphenylcarboxylate ester liquid-crystalline side groups. J Chromatogr A. 1986;358:95–106.

    Article  CAS  Google Scholar 

  9. Markides KE, Chang HC, Schregenberger CM, Bradshaw JS, Lee ML. Evaluation of smectic biphenylcarboxylate ester liquid-crystalline polysiloxane stationary phases for capillary column gas chromatography. J High Resolut Chromatogr Chromatogr Commun. 1985;8:516–20.

    Article  CAS  Google Scholar 

  10. Markides KE, Nishioka M, Tarbet BJ, Bradshaw JS, Lee ML. Smectic biphenylcarboxylate ester liquid crystalline polysiloxane stationary phase for capillary gas chromatography. Anal Chem. 1985;57:1296–9.

    Article  CAS  Google Scholar 

  11. Sander LC, Schneider M, Wise SA, Wolley C. Shape selectivity assessment of stationary phases in gas chromatography. J Microcol. 1994;6:115–25.

    Article  CAS  Google Scholar 

  12. Wise SA, Benner BA, Byrd GD, Chesler SN, Rebbert RE, Schantz MM. Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal Chem. 1988;60:887–94.

    Article  CAS  Google Scholar 

  13. Wise SA, Sander LC, Schantz MM, Hays MJ, Benner BA Jr. Recertification of Standard Reference Material (SRM) 1649, Urban Dust, for the determination of Polycyclic Aromatic Hydrocarbons (PAHs). Polycycl Aromat Compd. 2000;13:419–56.

    Article  CAS  Google Scholar 

  14. Wise SA, Schantz MM, Benner BA Jr, Hays MJ, Schiller SB. Certification of polycyclic aromatic hydrocarbons in a marine sediment reference material. Anal Chem. 1995;67:1171–8.

    Article  CAS  Google Scholar 

  15. Naikwadi KP, Wadgaonkar PP. New naphthalene containing side-chain liquid crystalline polysiloxane stationary phases for high-resolution gas chromatography. J Chromatogr A. 1998;811:97–103.

    Article  CAS  Google Scholar 

  16. Poster DL, Kucklick JR, Schantz MM, VanderPol SS, Leigh SD, Wise SA. Development of a house dust standard reference material for the determination of organic contaminants. Environ Sci Technol. 2007;41:2861–7.

    Article  CAS  Google Scholar 

  17. Wise SA, Poster DL, Schantz MM, Kucklick JR, Sander LC, Lopez de Alda M, et al. Two new marine sediment standard reference materials (SRMs) for the determination of organic contaminants. Anal Bioanal Chem. 2004;378:1251–64.

    Article  CAS  Google Scholar 

  18. http://www.restek.com/catalog/view/37446. Accessed 13 Sept 2017.

  19. Wilson WB, Sander LC, Oña-Ruales JO, Mössner SG, Sidisky LM, Lee ML, et al. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycle isomers in gas chromatography on stationary phases of different selectivity. J Chromatogr A. 2017;1484:73–84.

    Article  CAS  Google Scholar 

  20. Wilson WB, Sander LC, Oña-Ruales JO, Mössner SG, Sidisky LM, Lee ML, et al. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in gas chromatography on stationary phases of different selectivity. J Chromatogr A. 2017;1485:120–30.

    Article  CAS  Google Scholar 

  21. Wise SA, Bonnett WJ, Guenther FR, May WE. A relationship between reversed-phase C18 liquid chromatographic retention and the shape of polycyclic aromatic hydrocarbons. J Chromatogr Sci. 1981;19:457–65.

    Article  CAS  Google Scholar 

  22. Sander LC, Wise SA. Polycyclic Aromatic Hydrocarbon Structure Index; Natl. Inst. Stand. Technol. Spec. Publ. 922; U.S. Washington: Government Printing Office; 1997.

    Google Scholar 

  23. Wise SA, Sander LC. Molecular shape recognition for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography. In: Jinno K, editor. Chromatographic separation based on molecular recognition. New York: Wiley-VCH; 1997. p. 1–64.

    Google Scholar 

  24. Kováts E. Helv Chim Acta. 1958;41:1915–32.

    Article  Google Scholar 

  25. Van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 1963;11:463–71.

    Article  Google Scholar 

  26. Bemgård A, Colmsjö A, Lundmark BO. Gas chromatographic analysis of high-molecular-mass polycyclic aromatic hydrocarbons: II. Polycyclic aromatic hydrocarbons with relative molecular masses exceeding 328. J Chromatogr A. 1993;630:287–95.

    Article  Google Scholar 

  27. Schubert P, Schantz MM, Sander LC, Wise SA. Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/mass spectrometry. Anal Chem. 2003;75:234–46.

    Article  CAS  Google Scholar 

  28. Mössner SG, Lopez de Alda MJ, Sander LC, Lee ML, Wise SA. Gas chromatographic retention behavior of polycyclic aromatic sulfur heterocyclic compounds,(dibenzothiophene, naphtho[b]thiophenes, benzo[b]naphthothiophenes and alkylsubstituted derivatives) on stationary phases of different selectivity. J Chromatogr A. 1999;841:207–28.

    Article  Google Scholar 

  29. Janini GM, Muschik GM, Schroer JA, Zielinski WL Jr. Gas-liquid chromatographic evaluation and gas-chromatography/mass spectrometric application of new high-temperature liquid crystal stationary phases for polycyclic aromatic hydrocarbon separations. Anal Chem. 1976;48:1879–83.

    Article  CAS  Google Scholar 

  30. Wise SA, Sander LC, Chang HCK, Markides KE, Lee ML. Shape selectivity in liquid and gas chromatography: Polymeric octadecylsilane (C18) and liquid crystalline stationary phases. Chromatographia. 1988;25:473–9.

    Article  CAS  Google Scholar 

  31. Zielinski WL, Janini GM. Utility of high-​temperature thermotropic liquid crystals as stationary phases for novel gas-​liquid chromatographic separations. J Chromatogr A. 1979;186:237–47.

    Article  CAS  Google Scholar 

  32. Wilson WB, Sander LC, Lopez de Alda M, Lee ML, Wise SA. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;2016:120–30.

    Article  Google Scholar 

  33. Wilson WB, Sander LC, Lopez de Alda M, Lee ML, Wise SA. Retention behavior of polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A. 2016;1461:107–19.

    Article  CAS  Google Scholar 

  34. Miller MJ, Miller JC. Statistics and chemometrics for analytical chemistry. Sixth ed. New York: Prentice-Hall, Inc.; 2000.

    Google Scholar 

  35. Poster DL, Sander LC, Wise SA. Chromatographic methods of analysis for the determination of PAHs in environmental samples. In: Neilson AH, editor. PAHs and related compounds. The Handbook of Environmental Chemistry. Berlin: Springer; 1998. p. 77–135.

    Chapter  Google Scholar 

  36. Oña-Ruales JO, Ruiz-Morales Y, Wise SA. Identification and quantification of seven fused aromatic rings C H peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. J Chromatogr A. 2016;1442:83-93

  37. Oña-Ruales JO, Sharma AK, Wise SA. Identification and quantification of six-ring cata-condensed C26H16 polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Anal Bioanal Chem. 2015;407:9165–76.

    Article  Google Scholar 

  38. Oña-Ruales JO, Sander LC, Wilson WB, Wise SA. Revisiting shape selectivity in liquid chromatography for Polycyclic Aromatic Hydrocarbons (PAHs) – Six-ring and seven-ring cata-condensed PAH isomers of molecular mass 328 Da and 378 Da. Anal Bioanal Chem. https://doi.org/10.1007/s00216-017-0456-x

  39. Wise SA, Poster DL, Leigh SD, Rimmer CA, Mössner SG, Schubert P, et al. Polycyclic Aromatic Hydrocarbons (PAHs) in a coal tar standard reference material – SRM 1597a updated. Anal Bioanal Chem. 398:717–28.

  40. Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA. Qualitative characterization of SRM 1597a coal tar for polycyclic aromatic hydrocarbons and methyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectrometry. Anal Bioanal Chem. https://doi.org/10.1007/s00216-017-0464-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Nalin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

Certain commercial equipment or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 3.72 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalin, F., Sander, L.C., Wilson, W.B. et al. Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity. Anal Bioanal Chem 410, 1123–1137 (2018). https://doi.org/10.1007/s00216-017-0700-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0700-4

Keywords

Navigation