Skip to main content

Advertisement

Log in

Liquid chromatography–mass spectrometry methods for the intracellular determination of drugs and their metabolites: a focus on antiviral drugs

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Understanding the efficacy and/or toxicity of most drugs requires effective intracellular measurements of the drug and its metabolites. Nevertheless, the most common plasma marker of the biological effect of the drug is the area under the curve. Compared with drug determination in whole blood or urine, various difficulties occur in the development of analytical methods for intracellular measurements. We propose step-by-step guidelines to develop an analytical method exploring intracellular concentrations of antivirals and/or their metabolites. These guidelines are illustrated with the most sensitive liquid chromatography–mass spectrometry methods developed for human in vivo and in vitro studies. We summarize 18 studies that provided methods to explore intracellular concentrations of antivirals since 2002. To explore intracellular metabolites, two different approaches can be envisaged. The direct approach, most frequently using ion-pairing agents, is fast and requires only a small sample but is expensive. The indirect approach is the more widely used approach, but is cumbersome and time-consuming. In both cases, liquid chromatography–mass spectrometry has become the method of choice to determine intracellular drug concentrations with high sensitivity. These methods may increase our understanding of drug behavior in organisms. This is true for preclinical studies where the mechanism of action, the metabolism, and the toxicity of drugs are explored. It is also true for clinical applications when dose adjustment is needed and cannot rely on blood concentrations.

Direct and indirect approaches to measure intracellular concentrations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCRP:

Breast cancer resistance protein

dNTP:

Deoxynucleotide triphosphate

ESI:

Electrospray ionization

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HILIC:

Hydrophilic interaction liquid chromatography

HIV:

Human immunodeficiency virus

IC50 :

Half maximum inhibitory concentration

LC:

Liquid chromatography

MRP:

Multidrug-resistance-associated protein

MS:

Mass spectrometry

NNRTI:

Nonnucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside reverse transcriptase inhibitor

NtRTI:

Nucleotide reverse transcriptase inhibitor

PBMC:

Peripheral blood mononuclear cell

P-gp:

P-glycoprotein

PI:

Protease inhibitor

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

SPE:

Solid-phase extraction

SRM:

Selected reaction monitoring

References

  1. Capparelli EV, Englund JA, Connor JD, Spector SA, McKinney RE, Palumbo P, et al. Population pharmacokinetics and pharmacodynamics of zidovudine in HIV-infected infants and children. J Clin Pharmacol. 2003;43:133–40.

    Article  CAS  Google Scholar 

  2. Durand-Gasselin L, Da Silva D, Benech H, Pruvost A, Grassi J. Evidence and possible consequences of the phosphorylation of nucleoside reverse transcriptase inhibitors in human red blood cells. Antimicrob Agents Chemother. 2007;51:2105–11.

    Article  CAS  Google Scholar 

  3. Hirt D, Ekouévi DK, Pruvost A, Urien S, Arrivé E, Blanche S, et al. Plasma and intracellular tenofovir pharmacokinetics in the neonate (ANRS 12109 trial, step 2). Antimicrob Agents Chemother. 2011;55:2961–7.

    Article  CAS  Google Scholar 

  4. Gao WY, Agbaria R, Driscoll JS, Mitsuya H. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2’,3’-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem. 1994;269:12633–8.

    CAS  Google Scholar 

  5. Monro AM. Interspecies comparisons in toxicology: the utility and futility of plasma concentrations of the test substance. Regul Toxicol Pharmacol. 1990;12:137–60.

    Article  CAS  Google Scholar 

  6. Dollery CT. Intracellular drug concentrations. Clin Pharmacol Ther. 2013;93:263–6.

    Article  CAS  Google Scholar 

  7. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  Google Scholar 

  8. Bushman LR, Kiser JJ, Rower JE, Klein B, Zheng J-H, Ray ML, et al. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection. J Pharm Biomed Anal. 2011;56:390–401.

    Article  CAS  Google Scholar 

  9. Jansen RS, Rosing H, Kromdijk W, ter Heine R, Schellens JH, Beijnen JH. Simultaneous quantification of emtricitabine and tenofovir nucleotides in peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B. 2010;878:621–7.

    Article  CAS  Google Scholar 

  10. King T, Bushman L, Kiser J, Anderson PL, Ray M, Delahunty T, et al. Liquid chromatography-tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells. J Chromatogr B. 2006;843:147–56.

    Article  CAS  Google Scholar 

  11. Zheng J-H, Rower C, McAllister K, Castillo-Mancilla J, Klein B, Meditz A, et al. Application of an intracellular assay for determination of tenofovir-diphosphate and emtricitabine-triphosphate from erythrocytes using dried blood spots. J Pharm Biomed Anal. 2016;122:16–20.

    Article  CAS  Google Scholar 

  12. Coulier L, Gerritsen H, van Kampen JJA, Reedijk ML, Luider TM, Osterhaus ADME, et al. Comprehensive analysis of the intracellular metabolism of antiretroviral nucleosides and nucleotides using liquid chromatography-tandem mass spectrometry and method improvement by using ultra performance liquid chromatography. J Chromatogr B. 2011;879:2772–82.

    Article  CAS  Google Scholar 

  13. Goicoechea M, Jain S, Bi L, Sun S, Smith G, Ha B, et al. Interlaboratory measurement differences in intracellular carbovir triphosphate concentrations in HIV-infected patients: sources of variability in processing, shipping, and quantitation. J Clin Pharmacol. 2010;50:968–74.

    Article  CAS  Google Scholar 

  14. Pruvost A, Negredo E, Benech H, Theodoro F, Puig J, Grau E, et al. Measurement of intracellular didanosine and tenofovir phosphorylated metabolites and possible interaction of the two drugs in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2005;49:1907–14.

    Article  CAS  Google Scholar 

  15. Domingo P, Cabeza MC, Pruvost A, Torres F, Salazar J, del Mar GM, et al. Association of thymidylate synthase gene polymorphisms with stavudine triphosphate intracellular levels and lipodystrophy. Antimicrob Agents Chemother. 2011;55:1428–35.

    Article  CAS  Google Scholar 

  16. Holdich T, Shiveley LA, Sawyer J. Effect of Lamivudine on the plasma and intracellular pharmacokinetics of apricitabine, a novel nucleoside reverse transcriptase inhibitor, in healthy volunteers. Antimicrob Agents Chemother. 2007;51:2943–7.

    Article  CAS  Google Scholar 

  17. Colombo S, Beguin A, Telenti A, Biollaz J, Buclin T, Rochat B, et al. Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2005;819:259–76.

    Article  CAS  Google Scholar 

  18. Belkhir L, De Laveleye M, Vandercam B, Zech F, Delongie K-A, Capron A, et al. Quantification of darunavir and etravirine in human peripheral blood mononuclear cells using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS), clinical application in a cohort of 110 HIV-1 infected patients and evidence of a potential drug-drug interaction. Clin Biochem. 2016;49:580–6.

    Article  CAS  Google Scholar 

  19. Robbins BL, Nelson SR, Fletcher CV. A novel ultrasensitive LC-MS/MS assay for quantification of intracellular raltegravir in human cell extracts. J Pharm Biomed Anal. 2012;70:378–87.

    Article  CAS  Google Scholar 

  20. De Nicolò A, Bonifacio G, Boglione L, Cusato J, Pensi D, Tomasello C, et al. UHPLC-MS/MS method with automated on-line solid phase extraction for the quantification of entecavir in peripheral blood mononuclear cells of HBV+ patients. J Pharm Biomed Anal. 2016;118:64–9.

    Article  CAS  Google Scholar 

  21. Vela JE, Olson LY, Huang A, Fridland A, Ray AS. Simultaneous quantitation of the nucleotide analog adefovir, its phosphorylated anabolites and 2’-deoxyadenosine triphosphate by ion-pairing LC/MS/MS. J Chromatogr B Sci. 2007;848:335–43.

    Article  CAS  Google Scholar 

  22. Jimmerson LC, Ray ML, Bushman LR, Anderson PL, Klein B, Rower JE, et al. Measurement of intracellular ribavirin mono-, di- and triphosphate using solid phase extraction and LC-MS/MS quantification. J Chromatogr B Sci. 2015;978–979:163–72.

    Article  CAS  Google Scholar 

  23. De Nicolò A, Abdi AM, Boglione L, Baiett L, Allegra S, Di Perri G, et al. UPLC-MS/MS method with automated on-line SPE for the isomer-specific quantification of the first-generation anti-HCV protease inhibitors in peripheral blood mononuclear cells. J Pharm Biomed Anal. 2015;115:443–9.

    Article  CAS  Google Scholar 

  24. Rower JE, Jimmerson LC, Chen X, Zheng J-H, Hodara A, Bushman LR, et al. Validation and application of a liquid chromatography-tandem mass spectrometry method to determine the concentrations of sofosbuvir anabolites in cells. Antimicrob Agents Chemother. 2015;59:7671–9.

    Article  CAS  Google Scholar 

  25. Billat P-A, Sauvage F-L, Picard N, Tafzi N, Alain S, Essig M, et al. Liquid chromatography tandem mass spectrometry quantitation of intracellular concentrations of ganciclovir and its phosphorylated forms. Anal Bioanal Chem. 2015;407:3449–56.

    Article  CAS  Google Scholar 

  26. Almond LM, Hoggard PG, Edirisinghe D, Khoo SH, Back DJ. Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J Antimicrob Chemother. 2005;56:738–44.

    Article  CAS  Google Scholar 

  27. Almond LM, Edirisinghe D, Dalton M, Bonington A, Back DJ, Khoo SH. Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther. 2005;78:132–42.

    Article  CAS  Google Scholar 

  28. Kredo T, Van der Walt J-S, Siegfried N, Cohen K. Therapeutic drug monitoring of antiretrovirals for people with HIV. Cochrane Database Syst Rev. 2009;CD007268.

  29. Schinazi RF, Hernandez-Santiago BI, Hurwitz SJ. Pharmacology of current and promising nucleosides for the treatment of human immunodeficiency viruses. Antiviral Res. 2006;71:322–34.

    Article  CAS  Google Scholar 

  30. Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentré F, Taburet A-M. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin Pharmacokinet. 2010;49:17–45.

    Article  CAS  Google Scholar 

  31. Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther. 2000;22:685–708.

    Article  CAS  Google Scholar 

  32. Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res. 2008;134:124–46.

    Article  CAS  Google Scholar 

  33. De Clercq E. Antivirals and antiviral strategies. Nat Rev Microbiol. 2004;2:704–20.

    Article  Google Scholar 

  34. Anderson PL, Zheng J-H, King T, Bushman LR, Predhomme J, Meditz A, et al. Concentrations of zidovudine- and lamivudine-triphosphate according to cell type in HIV-seronegative adults. AIDS. 2007;21:1849–54.

    Article  CAS  Google Scholar 

  35. Burns RN, Hendrix CW, Chaturvedula A. Population pharmacokinetics of tenofovir and tenofovir-diphosphate in healthy women. J Clin Pharmacol. 2015;55:629–38.

    Article  CAS  Google Scholar 

  36. Delta Coordinating Committee. Evidence for prolonged clinical benefit from initial combination antiretroviral therapy: Delta extended follow-up. HIV Med. 2001;2:181–8.

    Article  Google Scholar 

  37. Törnevik Y, Jacobsson B, Britton S, Eriksson S. Intracellular metabolism of 3’-azidothymidine in isolated human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1991;7:751–9.

    Article  Google Scholar 

  38. Barry MG, Khoo SH, Veal GJ, Hoggard PG, Gibbons SE, Wilkins EG, et al. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS. 1996;10:1361–7.

    Article  CAS  Google Scholar 

  39. Feng JY, Shi J, Schinazi RF, Anderson KS. Mechanistic studies show that (-)-FTC-TP is a better inhibitor of HIV-1 reverse transcriptase than 3TC-TP. FASEB J. 1999;13:1511–7.

    CAS  Google Scholar 

  40. Wang LH, Begley J, St Claire RL, Harris J, Wakeford C, Rousseau FS. Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retroviruses. 2004;20:1173–82.

    Article  CAS  Google Scholar 

  41. Anderson PL, Glidden DV, Liu A, Buchbinder S, Lama JR, Guanira JV, et al. Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men. Sci Transl Med. 2012;4:151ra125.

    Article  CAS  Google Scholar 

  42. Daluge SM, Good SS, Faletto MB, Miller WH, St Clair MH, Boone LR, et al. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother. 1997;41:1082–93.

    CAS  Google Scholar 

  43. Kearney BP, Sayre JR, Flaherty JF, Chen S-S, Kaul S, Cheng AK. Drug-drug and drug-food interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol. 2005;45:1360–7.

    Article  CAS  Google Scholar 

  44. Sy SKB, Innes S, Derendorf H, Cotton MF, Rosenkranz B. Estimation of intracellular concentration of stavudine triphosphate in HIV-infected children given a reduced dose of 0.5 milligrams per kilogram twice daily. Antimicrob Agents Chemother. 2014;58:1084–91.

    Article  CAS  Google Scholar 

  45. Hoggard P, Khoo S, Barry M, Back D. Intracellular metabolism of zidovudine and stavudine in combination. J Infect Dis. 1996;174:671–2.

    Article  CAS  Google Scholar 

  46. Bethell RC, Lie YS, Parkin NT. In vitro activity of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor (NRTI), against 215 HIV-1 isolates resistant to other NRTIs. Antivir Chem Chemother. 2005;16:295–302.

    Article  CAS  Google Scholar 

  47. Bethell R, De Muys J, Lippens J, Richard A, Hamelin B, Ren C, et al. In vitro interactions between apricitabine and other deoxycytidine analogues. Antimicrob Agents Chemother. 2007;51:2948–53.

    Article  CAS  Google Scholar 

  48. Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19:1038–45.

    Article  Google Scholar 

  49. Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011;82:1227–33.

    Article  CAS  Google Scholar 

  50. Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos Biol Fate Chem. 2007;35:340–4.

    Article  CAS  Google Scholar 

  51. Elens L, Vandercam B, Yombi J-C, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11:1223–34.

    Article  CAS  Google Scholar 

  52. Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother. 2004;54:982–90.

    Article  CAS  Google Scholar 

  53. Nascimbeni M, Lamotte C, Peytavin G, Farinotti R, Clavel F. Kinetics of antiviral activity and intracellular pharmacokinetics of human immunodeficiency virus type 1 protease inhibitors in tissue culture. Antimicrob Agents Chemother. 1999;43:2629–34.

    CAS  Google Scholar 

  54. Chaillou S, Durant J, Garraffo R, Georgenthum E, Roptin C, Clevenbergh P, et al. Intracellular concentration of protease inhibitors in HIV-1-infected patients: correlation with MDR-1 gene expression and low dose of ritonavir. HIV Clin Trials. 2002;3:493–501.

    Article  CAS  Google Scholar 

  55. Khoo SH, Hoggard PG, Williams I, Meaden ER, Newton P, Wilkins EG, et al. Intracellular accumulation of human immunodeficiency virus protease inhibitors. Antimicrob Agents Chemother. 2002;46:3228–35.

    Article  CAS  Google Scholar 

  56. D’Avolio A, Carcieri C, Cusato J, Simiele M, Calcagno A, Allegra S, et al. Intracellular accumulation of atazanavir/ritonavir according to plasma concentrations and OATP1B1, ABCB1 and PXR genetic polymorphisms. J Antimicrob Chemother. 2014;69:3061–6.

    Article  CAS  Google Scholar 

  57. Croxtall JD, Lyseng-Williamson KA, Perry CM. Raltegravir. Drugs. 2008;68:131–8.

    Article  CAS  Google Scholar 

  58. Markowitz M, Morales-Ramirez JO, Nguyen B-Y, Kovacs CM, Steigbigel RT, Cooper DA, et al. Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2006;43:509–15.

    Article  CAS  Google Scholar 

  59. German P, Mathias A, Brainard D, Kearney BP. Clinical pharmacokinetics and pharmacodynamics of ledipasvir/sofosbuvir, a fixed-dose combination tablet for the treatment of hepatitis C. Clin Pharmacokinet. 2016;55:1337–51.

    Article  CAS  Google Scholar 

  60. Kirby BJ, Symonds WT, Kearney BP, Mathias AA. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of the hepatitis C virus NS5B polymerase inhibitor sofosbuvir. Clin Pharmacokinet. 2015;54:677–90.

    Article  CAS  Google Scholar 

  61. Dixit NM, Perelson AS. The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell Mol Life Sci. 2006;63:832–42.

    Article  CAS  Google Scholar 

  62. Feld JJ, Hoofnagle JH. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature. 2005;436:967–72.

    Article  CAS  Google Scholar 

  63. Lau JYN, Tam RC, Liang TJ, Hong Z. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology. 2002;35:1002–9.

    Article  CAS  Google Scholar 

  64. Wu LS, Jimmerson LC, MacBrayne CE, Kiser JJ, D’Argenio DZ. Modeling ribavirin-induced anemia in patients with chronic hepatitis C virus. CPT Pharmacomet Syst Pharmacol. 2016;5:65–73.

    Article  CAS  Google Scholar 

  65. Doehring A, Hofmann WP, Schlecker C, Zeuzem S, Sarrazin C, Berg T, et al. Role of nucleoside transporters SLC28A2/3 and SLC29A1/2 genetics in ribavirin therapy: protection against anemia in patients with chronic hepatitis C. Pharmacogenet Genomics. 2011;21:289–96.

    Article  CAS  Google Scholar 

  66. European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol. 2012;57:167–85.

    Article  Google Scholar 

  67. Sullivan V, Talarico CL, Stanat SC, Davis M, Coen DM, Biron KK. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature. 1992;358:162–4.

    Article  CAS  Google Scholar 

  68. Billat P-A, Woillard J-B, Essig M, Sauvage F-L, Picard N, Alain S, et al. Plasma and intracellular exposure to ganciclovir in adult renal transplant recipients: is there an association with haematological toxicity? J Antimicrob Chemother. 2016;71:484–9.

    Article  CAS  Google Scholar 

  69. Billat P-A, Ossman T, Saint-Marcoux F, Essig M, Rerolle J-P, Kamar N, et al. Multidrug resistance-associated protein 4 (MRP4) controls ganciclovir intracellular accumulation and contributes to ganciclovir-induced neutropenia in renal transplant patients. Pharmacol Res. 2016;111:501–8.

    Article  CAS  Google Scholar 

  70. Rao S, Abzug MJ, Carosone-Link P, Peterson T, Child J, Siparksy G, et al. Intravenous acyclovir and renal dysfunction in children: a matched case control study. J Pediatr. 2015;166:1462–1468.e4.

    Article  CAS  Google Scholar 

  71. Bernhoff E, Gutteberg TJ, Sandvik K, Hirsch HH, Rinaldo CH. Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression. Am J Transplant. 2008;8:1413–22.

    Article  CAS  Google Scholar 

  72. De Clercq E. Therapeutic potential of cidofovir (HPMPC, Vistide) for the treatment of DNA virus (i.e. herpes-, papova-, pox- and adenovirus) infections. Verh K Acad Voor Geneeskd Belg. 1996;58:19–47. discussion 47–9.

    Google Scholar 

  73. Momper JD, Zhang S, Randhawa PS, Shapiro R, Schonder KS, Venkataramanan R. Determination of cidofovir in human plasma after low dose drug administration using high-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2010;53:1015–21.

    Article  CAS  Google Scholar 

  74. Trifillis AL, Cui X, Drusano GL. Use of human renal proximal tubule cell cultures for studying foscarnet-induced nephrotoxicity in vitro. Antimicrob Agents Chemother. 1993;37:2496–9.

    Article  CAS  Google Scholar 

  75. Yeh L-T, Nguyen M, Dadgostari S, Bu W, Lin C-C. LC-MS/MS method for simultaneous determination of viramidine and ribavirin levels in monkey red blood cells. J Pharm Biomed Anal. 2007;43:1057–64.

    Article  CAS  Google Scholar 

  76. Grievink HW, Luisman T, Kluft C, Moerland M, Malone KE. Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv Biobank. 2016;14:410–5.

    Article  CAS  Google Scholar 

  77. Becher F, Pruvost A, Goujard C, Guerreiro C, Delfraissy J-F, Grassi J, et al. Improved method for the simultaneous determination of d4T, 3TC and ddl intracellular phosphorylated anabolites in human peripheral-blood mononuclear cells using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2002;16:555–65.

    Article  CAS  Google Scholar 

  78. Lemaire M, Tillement JP. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J Pharm Pharmacol. 1982;34:715–8.

    Article  CAS  Google Scholar 

  79. Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPTTM) and standard density gradient. BMC Immunol. 2015;16:48.

    Article  CAS  Google Scholar 

  80. Ruitenberg JJ, Mulder CB, Maino VC, Landay AL, Ghanekar SA. VACUTAINER CPT and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol. 2006;7:11.

    Article  CAS  Google Scholar 

  81. Falck P, Guldseth H, Asberg A, Midtvedt K, Reubsaet JLE. Determination of ciclosporin A and its six main metabolites in isolated T-lymphocytes and whole blood using liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2007;852:345–52.

    Article  CAS  Google Scholar 

  82. Fromentin E, Gavegnano C, Obikhod A, Schinazi RF. Simultaneous quantification of intracellular natural and antiretroviral nucleosides and nucleotides by liquid chromatography-tandem mass spectrometry. Anal Chem. 2010;82:1982–9.

    Article  CAS  Google Scholar 

  83. Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–8.

    Article  CAS  Google Scholar 

  84. ter Heine R, Davids M, Rosing H, van Gorp ECM, Mulder JW, van der Heide YT, et al. Quantification of HIV protease inhibitors and non-nucleoside reverse transcriptase inhibitors in peripheral blood mononuclear cell lysate using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B. 2009;877:575–80.

    Article  CAS  Google Scholar 

  85. Simiele M, D’Avolio A, Baietto L, Siccardi M, Sciandra M, Agati S, et al. Evaluation of the mean corpuscular volume of peripheral blood mononuclear cells of HIV patients by a coulter counter to determine intracellular drug concentrations. Antimicrob Agents Chemother. 2011;55:2976–8.

    Article  CAS  Google Scholar 

  86. Ford J, Boffito M, Maitland D, Hill A, Back D, Khoo S, et al. Influence of atazanavir 200 mg on the intracellular and plasma pharmacokinetics of saquinavir and ritonavir 1600/100 mg administered once daily in HIV-infected patients. J Antimicrob Chemother. 2006;58:1009–16.

    Article  CAS  Google Scholar 

  87. Crommentuyn KML, Mulder JW, Mairuhu ATA, van Gorp ECM, Meenhorst PL, Huitema ADR, et al. The plasma and intracellular steady-state pharmacokinetics of lopinavir/ritonavir in HIV-1-infected patients. Antivir Ther. 2004;9:779–85.

    CAS  Google Scholar 

  88. Au JL, Su MH, Wientjes MG. Extraction of intracellular nucleosides and nucleotides with acetonitrile. Clin Chem. 1989;35:48–51.

    CAS  Google Scholar 

  89. de Souza J, Benet LZ, Huang Y, Storpirtis S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009;98:4413–9.

    Article  CAS  Google Scholar 

  90. Wang X, Baba M. The role of breast cancer resistance protein (BCRP/ABCG2) in cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother. 2005;16:213–6.

    Article  CAS  Google Scholar 

  91. Jorajuria S, Dereuddre-Bosquet N, Becher F, Martin S, Porcheray F, Garrigues A, et al. ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages. Antivir Ther. 2004;9:519–28.

    CAS  Google Scholar 

  92. Dumond JB, Reddy YS, Troiani L, Rodriguez JF, Bridges AS, Fiscus SA, et al. Differential extracellular and intracellular concentrations of zidovudine and lamivudine in semen and plasma of HIV-1-infected men. J Acquir Immune Defic Syndr. 2008;48:156–62.

    Article  CAS  Google Scholar 

  93. Hashiguchi Y, Hamada A, Shinohara T, Tsuchiya K, Jono H, Saito H. Role of P-glycoprotein in the efflux of raltegravir from human intestinal cells and CD4+ T-cells as an interaction target for anti-HIV agents. Biochem Biophys Res Commun. 2013;439:221–7.

    Article  CAS  Google Scholar 

  94. Hoque MT, Kis O, De Rosa MF, Bendayan R. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters. Antimicrob Agents Chemother. 2015;59:2572–82.

    Article  CAS  Google Scholar 

  95. Zembruski NCL, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother. 2011;66:802–12.

    Article  CAS  Google Scholar 

  96. Robillard KR, Chan GNY, Zhang G, la Porte C, Cameron W. Bendayan R Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother. 2014;58:1713.

    Article  CAS  Google Scholar 

  97. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310:334–41.

    Article  CAS  Google Scholar 

  98. Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59:238–45.

    Article  CAS  Google Scholar 

  99. Seelig A, Blatter XL, Wohnsland F. Substrate recognition by P-glycoprotein and the multidrug resistance-associated protein MRP1: a comparison. Int J Clin Pharmacol Ther. 2000;38:111–21.

    Article  CAS  Google Scholar 

  100. Jarvis SM, Thorn JA, Glue P. Ribavirin uptake by human erythrocytes and the involvement of nitrobenzylthioinosine-sensitive (es)-nucleoside transporters. Br J Pharmacol. 1998;123:1587–92.

    Article  CAS  Google Scholar 

  101. Endres CJ, Moss AM, Ke B, Govindarajan R, Choi D-S, Messing RO, et al. The role of the equilibrative nucleoside transporter 1 (ENT1) in transport and metabolism of ribavirin by human and wild-type or Ent1(-/-) mouse erythrocytes. J Pharmacol Exp Ther. 2009;329:387–98.

    Article  CAS  Google Scholar 

  102. King JR, Dutta S, Cohen D, Podsadecki TJ, Ding B, Awni WM, et al. Drug-drug interactions between sofosbuvir and ombitasvir-paritaprevir-ritonavir with or without dasabuvir. Antimicrob Agents Chemother. 2016;60:855–61.

    Article  CAS  Google Scholar 

  103. Li M, Si L, Pan H, Rabba AK, Yan F, Qiu J, et al. Excipients enhance intestinal absorption of ganciclovir by P-gp inhibition: assessed in vitro by everted gut sac and in situ by improved intestinal perfusion. Int J Pharm. 2011;403:37–45.

    Article  CAS  Google Scholar 

  104. Adachi M, Sampath J, Lan L, Sun D, Hargrove P, Flatley R, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem. 2002;277:38998–9004.

    Article  CAS  Google Scholar 

  105. Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol. 1999;128:403–11.

    Article  CAS  Google Scholar 

  106. Matsson P, Pedersen JM, Norinder U, Bergström CAS, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.

    Article  CAS  Google Scholar 

  107. Weidner LD, Fung KL, Kannan P, Moen JK, Kumar JS, Mulder J, et al. Tariquidar is an inhibitor and not a substrate of human and mouse P-glycoprotein. Drug Metab Dispos Biol Fate Chem. 2016;44:275–82.

    Article  Google Scholar 

  108. Hammond JR, Archer RGE. Interaction of the novel adenosine uptake inhibitor 3-[1-(6,7-diethoxy-2-morpholinoquinazolin-4-yl)piperidin-4-yl]-1,6-dimethyl-2,4(1H,3H)-quinazolinedione nydrochloride (KF24345) with the es and ei subtypes of equilibrative nucleoside transporters. J Pharmacol Exp Ther. 2004;308:1083–93.

    Article  CAS  Google Scholar 

  109. Aherne GW, Hardcastle A, Raynaud F, Jackman AL. Immunoreactive dUMP and TTP pools as an index of thymidylate synthase inhibition; effect of tomudex (ZD1694) and a nonpolyglutamated quinazoline antifolate (CB30900) in L1210 mouse leukaemia cells. Biochem Pharmacol. 1996;51:1293–301.

    Article  CAS  Google Scholar 

  110. King T, Bushman L, Anderson PL, Delahunty T, Ray M, Fletcher CV. Quantitation of zidovudine triphosphate concentrations from human peripheral blood mononuclear cells by anion exchange solid phase extraction and liquid chromatography-tandem mass spectroscopy; an indirect quantitation methodology. J Chromatogr B. 2006;831:248–57.

    Article  CAS  Google Scholar 

  111. Benech H, Becher F, Pruvost A, Grassi JJ. Is stavudine triphosphate a natural metabolite of zidovudine? Antimicrob Agents Chemother. 2006;50:2899–901.

    Article  CAS  Google Scholar 

  112. Kuster H, Vogt M, Joos B, Nadai V, Lüthy R. A method for the quantification of intracellular zidovudine nucleotides. J Infect Dis. 1991;164:773–6.

    Article  CAS  Google Scholar 

  113. Slusher JT, Kuwahara SK, Hamzeh FM, Lewis LD, Kornhauser DM, Lietman PS. Intracellular zidovudine (ZDV) and ZDV phosphates as measured by a validated combined high-pressure liquid chromatography-radioimmunoassay procedure. Antimicrob Agents Chemother. 1992;36:2473–7.

    Article  CAS  Google Scholar 

  114. Solas C, Li YF, Xie MY, Sommadossi JP, Zhou XJ. Intracellular nucleotides of (-)-2’,3’-deoxy-3’-thiacytidine in peripheral blood mononuclear cells of a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1998;42:2989–95.

    CAS  Google Scholar 

  115. Jansen RS, Rosing H, de Wolf CJF, Beijnen JH. Development and validation of an assay for the quantitative determination of cladribine nucleotides in MDCKII cells and culture medium using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:4049–59.

    Article  CAS  Google Scholar 

  116. Pruvost A, Becher F, Bardouille P, Guerrero C, Creminon C, Delfraissy JF, et al. Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:1401–8.

    Article  CAS  Google Scholar 

  117. Compain S, Durand-Gasselin L, Grassi J, Benech H. Improved method to quantify intracellular zidovudine mono- and triphosphate in peripheral blood mononuclear cells by liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2007;42:389–404.

    Article  CAS  Google Scholar 

  118. Zinellu A, Sotgia S, Pasciu V, Madeddu M, Leoni GG, Naitana S, et al. Intracellular adenosine 5’-triphosphate, adenosine 5’-diphosphate, and adenosine 5’-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor. Electrophoresis. 2008;29:3069–73.

    CAS  Google Scholar 

  119. Deforce DL, Ryniers FP, van den Eeckhout EG, Lemière F, Esmans EL. Analysis of DNA adducts in DNA hydrolysates by capillary zone electrophoresis and capillary zone electrophoresis-electrospray mass spectrometry. Anal Chem. 1996;68:3575–84.

    Article  CAS  Google Scholar 

  120. Wolf SM, Vouros P. Incorporation of sample stacking techniques into the capillary electrophoresis CF-FAB mass spectrometric analysis of DNA adducts. Anal Chem. 1995;67:891–900.

    Article  CAS  Google Scholar 

  121. Liu CC, Huang JS, Tyrrell DLJ, Dovichi NJ. Capillary electrophoresis-electrospray-mass spectrometry of nucleosides and nucleotides: application to phosphorylation studies of anti-human immunodeficiency virus nucleosides in a human hepatoma cell line. Electrophoresis. 2005;26:1424–31.

    Article  CAS  Google Scholar 

  122. Boxer SG, Kraft ML, Weber PK. Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys. 2009;38:53–74.

    Article  CAS  Google Scholar 

  123. Vanbellingen QP, Castellanos A, Rodriguez-Silva M, Paudel I, Chambers JW, Fernandez-Lima FA. Analysis of chemotherapeutic drug delivery at the single cell level using 3D-MSI-TOF-SIMS. J Am Soc Mass Spectrom. 2016;27:2033–40.

    Article  CAS  Google Scholar 

  124. Pruvost A, Théodoro F, Agrofoglio L, Negredo E, Bénech H. Specificity enhancement with LC-positive ESI-MS/MS for the measurement of nucleotides: application to the quantitative determination of carbovir triphosphate, lamivudine triphosphate and tenofovir diphosphate in human peripheral blood mononuclear cells. J Mass Spectrom. 2008;43:224–33.

    Article  CAS  Google Scholar 

  125. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. Geneva: World Health Organization; 2013. Available via http://www.ncbi.nlm.nih.gov/books/NBK195400/. Accessed 1 May 2016 May.

  126. Ter Heine R, Mulder JW, van Gorp ECM, Wagenaar JFP, Beijnen JH, Huitema ADR. Intracellular and plasma steady-state pharmacokinetics of raltegravir, darunavir, etravirine and ritonavir in heavily pre-treated HIV-infected patients. Br J Clin Pharmacol. 2010;69:475–83.

    Article  CAS  Google Scholar 

  127. Rower JE, Meissner EG, Jimmerson LC, Osinusi A, Sims Z, Petersen T, et al. Serum and cellular ribavirin pharmacokinetic and concentration-effect analysis in HCV patients receiving sofosbuvir plus ribavirin. J Antimicrob Chemother. 2015;70:2322–9.

    Article  CAS  Google Scholar 

  128. Wu LS, Rower JE, Burton JR, Anderson PL, Hammond KP, Baouchi-Mokrane F, et al. Population pharmacokinetic modeling of plasma and intracellular ribavirin concentrations in patients with chronic hepatitis C virus infection. Antimicrob Agents Chemother. 2015;59:2179–88.

    Article  CAS  Google Scholar 

  129. Korzekwa KR, Nagar S, Tucker J, Weiskircher EA, Bhoopathy S, Hidalgo IJ. Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug Metab Dispos Biol Fate Chem. 2012;40:865–76.

    Article  CAS  Google Scholar 

  130. Durand-Gasselin L, Pruvost A, Dehée A, Vaudre G, Tabone M-D, Grassi J, et al. High levels of zidovudine (AZT) and its intracellular phosphate metabolites in AZT- and AZT-lamivudine-treated newborns of human immunodeficiency virus-infected mothers. Antimicrob Agents Chemother. 2008;52:2555–63.

    Article  CAS  Google Scholar 

  131. Chen J, Garner RC, Lee LS, Seymour M, Fuchs EJ, Hubbard WC, et al. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo. Clin Pharmacol Ther. 2010;88:796–800.

    Article  CAS  Google Scholar 

  132. Flynn PM, Rodman J, Lindsey JC, Robbins B, Capparelli E, Knapp KM, et al. Intracellular pharmacokinetics of once versus twice daily zidovudine and lamivudine in adolescents. Antimicrob Agents Chemother. 2007;51:3516–22.

    Article  CAS  Google Scholar 

  133. Aweeka FT, Rosenkranz SL, Segal Y, Coombs RW, Bardeguez A, Thevanayagam L, et al. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine. AIDS. 2006;20:1833–41.

    Article  CAS  Google Scholar 

  134. Moore JD, Acosta EP, Johnson VA, Bassett R, Eron JJ, Fischl MA, et al. Intracellular nucleoside triphosphate concentrations in HIV-infected patients on dual nucleoside reverse transcriptase inhibitor therapy. Antivir Ther. 2007;12:981–6.

    CAS  Google Scholar 

  135. Anderson PL, Kakuda TN, Kawle S, Fletcher CV. Antiviral dynamics and sex differences of zidovudine and lamivudine triphosphate concentrations in HIV-infected individuals. AIDS. 2003;17:2159–68.

    Article  CAS  Google Scholar 

  136. Mu L, Zhou R, Tang F, Liu X, Li S, Xie F, et al. Intracellular pharmacokinetic study of zidovudine and its phosphorylated metabolites. Acta Pharm Sin B. 2016;6:158–62.

    Article  Google Scholar 

  137. Dickinson L, Yapa HM, Jackson A, Moyle G, Else L, Amara A, et al. Plasma tenofovir, emtricitabine, and rilpivirine and intracellular tenofovir diphosphate and emtricitabine triphosphate pharmacokinetics following drug intake cessation. Antimicrob Agents Chemother. 2015;59:6080–6.

    Article  CAS  Google Scholar 

  138. Sluis-Cremer N, Koontz D, Bassit L, Hernandez-Santiago BI, Detorio M, Rapp KL, et al. Anti-human immunodeficiency virus activity, cross-resistance, cytotoxicity, and intracellular pharmacology of the 3’-azido-2’,3’-dideoxypurine nucleosides. Antimicrob Agents Chemother. 2009;53:3715–9.

    Article  CAS  Google Scholar 

  139. Baheti G, Kiser JJ, Havens PL, Fletcher CV. Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5294–9.

    Article  CAS  Google Scholar 

  140. Havens PL, Kiser JJ, Stephensen CB, Hazra R, Flynn PM, Wilson CM, et al. Association of higher plasma vitamin D binding protein and lower free calcitriol levels with tenofovir disoproxil fumarate use and plasma and intracellular tenofovir pharmacokinetics: cause of a functional vitamin D deficiency? Antimicrob Agents Chemother. 2013;57:5619–28.

    Article  CAS  Google Scholar 

  141. Hawkins T, Veikley W, Durand-Gasselin L, Babusis D, Reddy YS, Flaherty JF, et al. Intracellular nucleotide levels during coadministration of tenofovir disoproxil fumarate and didanosine in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:1549–55.

    Article  CAS  Google Scholar 

  142. Baheti G, King JR, Acosta EP, Fletcher CV. Age-related differences in plasma and intracellular tenofovir concentrations in HIV-1-infected children, adolescents and adults. AIDS. 2013;27:221–5.

    Article  CAS  Google Scholar 

  143. Delaney WE, Ray AS, Yang H, Qi X, Xiong S, Zhu Y, et al. Intracellular metabolism and in vitro activity of tenofovir against hepatitis B virus. Antimicrob Agents Chemother. 2006;50:2471–7.

    Article  CAS  Google Scholar 

  144. Moyle G, Boffito M, Fletcher C, Higgs C, Hay PE, Song IH, et al. Steady-state pharmacokinetics of abacavir in plasma and intracellular carbovir triphosphate following administration of abacavir at 600 milligrams once daily and 300 milligrams twice daily in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother. 2009;53:1532–8.

    Article  CAS  Google Scholar 

  145. Goicoechea M, Jain S, Bi L, Kemper C, Daar ES, Diamond C, et al. Abacavir and tenofovir disoproxil fumarate co-administration results in a nonadditive antiviral effect in HIV-1-infected patients. AIDS. 2010;24:707–16.

    Article  CAS  Google Scholar 

  146. Sharma PL, Nurpeisov V, Hernandez-Santiago B, Beltran T, Schinazi RF. Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Curr Top Med Chem. 2004;4:895–919.

    Article  CAS  Google Scholar 

  147. Azoulay S, Nevers M-C, Créminon C, Heripret L, Durant J, Dellamonica P, et al. Sensitive enzyme immunoassay for measuring plasma and intracellular nevirapine levels in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2004;48:104–9.

    Article  CAS  Google Scholar 

  148. Djabarouti S, Breilh D, Pellegrin I, Lavit M, Camou F, Caubet O, et al. Intracellular and plasma efavirenz concentrations in HIV-infected patients switching from successful protease inhibitor-based highly active antiretroviral therapy (HAART) to efavirenz-based HAART (SUSTIPHAR study). J Antimicrob Chemother. 2006;58:1090–3.

    Article  CAS  Google Scholar 

  149. Wang L, Soon GH, Seng K-Y, Li J, Lee E, Yong E-L, et al. Pharmacokinetic modeling of plasma and intracellular concentrations of raltegravir in healthy volunteers. Antimicrob Agents Chemother. 2011;55:4090–5.

    Article  CAS  Google Scholar 

  150. Mosnier-Thoumas S, Djabarouti S, Xuereb F, Lazaro E, Pellegrin J-L, Saux M-C, et al. A sensitive liquid chromatography coupled with mass spectrometry method for the intracellular and plasma quantification of raltegravir after solid-phase extraction. J Pharm Pharmacol. 2011;63:1559–65.

    Article  CAS  Google Scholar 

  151. Mitchell C, Roemer E, Nkwopara E, Robbins B, Cory T, Rue T, et al. Correlation between plasma, intracellular, and cervical tissue levels of raltegravir at steady-state dosing in healthy women. Antimicrob Agents Chemother. 2014;58:3360–5.

    Article  CAS  Google Scholar 

  152. Moltó J, Valle M, Back D, Cedeño S, Watson V, Liptrott N, et al. Plasma and intracellular (peripheral blood mononuclear cells) pharmacokinetics of once-daily raltegravir (800 milligrams) in HIV-infected patients. Antimicrob Agents Chemother. 2011;55:72–5.

    Article  CAS  Google Scholar 

  153. DiCenzo R, Frerichs V, Larppanichpoonphol P, Predko L, Chen A, Reichman R, et al. Effect of quercetin on the plasma and intracellular concentrations of saquinavir in healthy adults. Pharmacotherapy. 2006;26:1255–61.

    Article  CAS  Google Scholar 

  154. D’Avolio A, Simiele M, Calcagno A, Siccardi M, Larovere G, Agati S, et al. Intracellular accumulation of ritonavir combined with different protease inhibitors and correlations between concentrations in plasma and peripheral blood mononuclear cells. J Antimicrob Chemother. 2013;68:907–10.

    Article  CAS  Google Scholar 

  155. Ray AS, Vela JE, Olson L, Fridland A. Effective metabolism and long intracellular half life of the anti-hepatitis B agent adefovir in hepatic cells. Biochem Pharmacol. 2004;68:1825–31.

    Article  CAS  Google Scholar 

  156. Fuchs EJ, Kiser JJ, Hendrix CW, Sulkowski M, Radebaugh C, Bushman L, et al. Plasma and intracellular ribavirin concentrations are not significantly altered by abacavir in hepatitis C virus-infected patients. J Antimicrob Chemother. 2016;71:1597–600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Saint-Marcoux.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billat, PA., Saint-Marcoux, F. Liquid chromatography–mass spectrometry methods for the intracellular determination of drugs and their metabolites: a focus on antiviral drugs. Anal Bioanal Chem 409, 5837–5853 (2017). https://doi.org/10.1007/s00216-017-0449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0449-9

Keywords

Navigation