Skip to main content
Log in

Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The proliferation of new psychoactive substances (NPS) in recent years has resulted in the development of numerous analytical methods for the detection and identification of known and unknown NPS derivatives. High-resolution mass spectrometry (HRMS) has been identified as the method of choice for broad screening of NPS in a wide range of analytical contexts because of its ability to measure accurate masses using data-independent acquisition (DIA) techniques. Additionally, it has shown promise for non-targeted screening strategies that have been developed in order to detect and identify novel analogues without the need for certified reference materials (CRMs) or comprehensive mass spectral libraries. This paper reviews the applications of HRMS for the analysis of NPS in forensic drug chemistry and analytical toxicology. It provides an overview of the sample preparation procedures in addition to data acquisition, instrumental analysis, and data processing techniques. Furthermore, it gives an overview of the current state of non-targeted screening strategies with discussion on future directions and perspectives of this technique.

Missing the bullseye - a graphical respresentation of non-targeted screening. Image courtesy of Christian Alonzo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collins M. Some new psychoactive substances: precursor chemicals and synthesis-driven end-products. Drug Test Anal. 2011;3:404–16.

    Article  CAS  Google Scholar 

  2. Gibbons S. "Legal highs" – novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin Toxicol. 2012;50:15–24.

    Article  CAS  Google Scholar 

  3. Hill SL, Thomas SHL. Clinical toxicology of newer recreational drugs. Clin Toxicol. 2011;49:705–19.

    Article  CAS  Google Scholar 

  4. Jerrard DA. "Designer drugs" – a current perspective. J Emerg Med. 1990;8:733–41.

    Article  CAS  Google Scholar 

  5. Zawilska JB. "Legal highs" – new players in the old drama. Curr Drug Abuse Rev. 2011;4:122–30.

    Article  CAS  Google Scholar 

  6. Meyer MR. New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Arch Toxicol. 2016;90:2421–44.

    Article  CAS  Google Scholar 

  7. European Drug Report 2016. Accessed in October 2016. Available at: http://www.emcdda.europa.eu/edr2016

  8. European Drug Report 2013. Accessed in November 2016. Available at: http://www.emcdda.europa.eu/publications/edr/trends-developments/2013

  9. Høiseth G, Tuv SS, Karinen R. Blood concentrations of new designer benzodiazepines in forensic cases. Forensic Sci Int. 2016;268:35–8.

    Article  Google Scholar 

  10. Suzuki J, El-Haddad S. A review: fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend. 2017;171:107–16.

    Article  CAS  Google Scholar 

  11. Archer RP, Treble R, Williams K. Reference materials for new psychoactive substances. Drug Test Anal. 2011;3:505–14.

    Article  CAS  Google Scholar 

  12. Remane D, Wissenbach DK, Peters FT. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology – an update. Clin Biochem. 2016;49:1051–71.

    Article  CAS  Google Scholar 

  13. Meyer MR, Du P, Schuster F, Maurer HH. Studies on the metabolism of the alpha-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom. 2010;45:1426–42.

    Article  CAS  Google Scholar 

  14. Meyer MR, Maurer HH. Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal Bioanal Chem. 2012;403:1221–231.

    Article  CAS  Google Scholar 

  15. Meyer MR, Maurer HH. Review: LC coupled to low- and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices–where do we stand today? Anal Chim Acta. 2016;927:13–20.

    Article  CAS  Google Scholar 

  16. Ojanperä I, Kolmonen M, Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem. 2012;403:1203–20.

    Article  Google Scholar 

  17. Maurer HH, Meyer MR. High-resolution mass spectrometry in toxicology: current status and future perspectives. Arch Toxicol. 2016;90:2161–72.

    Article  CAS  Google Scholar 

  18. Scientific Working Group for the Analysis of Seized Drugs Recommendations. Accessed in December 2016. Available at: http://www.swgdrug.org/approved

  19. Wu AH, Gerona R, Armenian P, French D, Petrie M, Lynch KL. Role of liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology. Clin Toxicol. 2012;50:733–42.

    Article  CAS  Google Scholar 

  20. Peters FT. Recent developments in urinalysis of metabolites of new psychoactive substances using LC-MS. Bioanalysis. 2014;6:2083–107.

    Article  Google Scholar 

  21. Ellefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev. 2016;48:1–29.

  22. Shevyrin V, Melkozerov V, Eltsov O, Shafran Y, Morzherin Y. Synthetic cannabinoid 3-benzyl-5-[1-(2-pyrrolidin-1-ylethyl)-1H-indol-3-yl]-1,2,4-oxadiazole. The first detection in illicit market of new psychoactive substances. Forensic Sci Int. 2016;259:95–100.

    Article  CAS  Google Scholar 

  23. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y. 3-Naphthoylindazoles and 2-naphthoylbenzoimidazoles as novel chemical groups of synthetic cannabinoids: chemical structure elucidation, analytical characteristics and identification of the first representatives in smoke mixtures. Forensic Sci Int. 2014;242:72–80.

    Article  CAS  Google Scholar 

  24. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y, Morzherin Y, et al. Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group. Anal Bioanal Chem. 2015;407:6301–15.

    Article  CAS  Google Scholar 

  25. Sekuła K, Zuba D. Structural elucidation and identification of a new derivative of phenethylamine using quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2013;27:2081–90.

    Article  Google Scholar 

  26. Zuba D, Sekuła K. Analytical characterization of three hallucinogenic N-(2-methoxy)benzyl derivatives of the 2C-series of phenethylamine drugs. Drug Test Anal. 2013;5:634–45.

    Article  CAS  Google Scholar 

  27. Zuba D, Sekuła K, Buczek A. 25C-NBOMe – new potent hallucinogenic substance identified on the drug market. Forensic Sci Int. 2013;227:7–14.

    Article  CAS  Google Scholar 

  28. Glicksberg L, Bryand K, Kerrigan S. Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J Chromatogr B. 2016;1035:91–103.

    Article  CAS  Google Scholar 

  29. Soh YN, Elliott S. An investigation of the stability of emerging new psychoactive substances. Drug Test Anal. 2014;6:696–704.

    Article  CAS  Google Scholar 

  30. Montesano C, Vannutelli G, Gregori A, Ripani L, Compagnone D, Curini R, et al. Broad screening and identification of novel psychoactive substances in plasma by high-performance liquid chromatography-high-resolution mass spectrometry and post-run library matching. J Anal Toxicol. 2016;40:519–28.

    Article  CAS  Google Scholar 

  31. Pasin D, Bidny S, Fu S. Analysis of new designer drugs in post-mortem blood using high-resolution mass spectrometry. J Anal Toxicol. 2015;39:163–71.

    Article  CAS  Google Scholar 

  32. Woźniakiewicz A, Wietecha-Posłuszny R, Woźniakiewicz M, Bryczek E, Kościelniak P. A quick method for determination of psychoactive agents in serum and hair by using capillary electrophoresis and mass spectrometry. J Pharm Biomed Anal. 2015;111:177–85.

    Article  Google Scholar 

  33. Concheiro M, Anizan S, Ellefsen K, Huestis MA. Simultaneous quantification of 28 synthetic cathinones and metabolites in urine by liquid chromatography-high resolution mass spectrometry. Anal Bioanal Chem. 2013;405:9437–48.

    Article  CAS  Google Scholar 

  34. Concheiro M, Castaneto M, Kronstrand R, Huestis MA. Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching. J Chromatogr A. 2015;1397:32–42.

    Article  CAS  Google Scholar 

  35. Archer JR, Dargan PI, Hudson S, Wood DM. Analysis of anonymous pooled urine from portable urinals in central London confirms the significant use of novel psychoactive substances. QJM. 2013;106:147–52.

    Article  CAS  Google Scholar 

  36. Archer JR, Hudson S, Jackson O, Yamamoto T, Lovett C, Lee HM, et al. Analysis of anonymized pooled urine in nine UK cities: variation in classical recreational drug, novel psychoactive substance and anabolic steroid use. QJM. 2015;108:929–33.

    Article  CAS  Google Scholar 

  37. Archer JR, Dargan PI, Lee HM, Hudson S, Wood DM. Trend analysis of anonymized pooled urine from portable street urinals in central London identifies variation in the use of novel psychoactive substances. Clin Toxicol. 2014;52:160–5.

    Article  CAS  Google Scholar 

  38. Andrés-Costa MJ, Andreu V, Picó Y. Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A. 2016;1461:98–106.

    Article  Google Scholar 

  39. Baz-Lomba JA, Reid MJ, Thomas KV. Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTOF. Anal Chim Acta. 2016;914:81–90.

    Article  CAS  Google Scholar 

  40. González-Mariño I, Gracia-Lor E, Bagnati R, Martins CP, Zuccato E, Castiglioni S. Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry. Anal Bioanal Chem. 2016;408:4297–309.

    Article  Google Scholar 

  41. Backberg M, Tworek L, Beck O, Helander A. Analytically confirmed intoxications involving MDMB-CHMICA from the STRIDA project. J Med Toxicol. 2017;13:52–60.

    Article  Google Scholar 

  42. Sundström M, Pelander A, Simojoki K, Ojanperä I. Patterns of drug abuse among drug users with regular and irregular attendance for treatment as detected by comprehensive UHPLC-HR-TOF-MS. Drug Test Anal. 2016;8:39–45.

    Article  Google Scholar 

  43. Sundström M, Pelander A, Angerer V, Hutter M, Kneisel S, Ojanperä I. A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method for screening synthetic cannabinoids and other drugs of abuse in urine. Anal Bioanal Chem. 2013;405:8463–74.

    Article  Google Scholar 

  44. Frison G, Frasson S, Zancanaro F, Tedeschi G, Zamengo L. Detection of 3-methylmethcathinone and its metabolites 3-methylephedrine and 3-methylnorephedrine in pubic hair samples by liquid chromatography-high resolution/high accuracy Orbitrap mass spectrometry. Forensic Sci Int. 2016;265:131–7.

    Article  CAS  Google Scholar 

  45. Montesano C, Vannutelli G, Massa M, Simeoni MC, Gregori A, Ripani L, et al. Multi-class analysis of new psychoactive substances and metabolites in hair by pressurized liquid extraction coupled to HPLC-HRMS. Drug Test Anal. 2016. doi:10.1002/dta.2043.

    Google Scholar 

  46. Fornal E. Identification of substituted cathinones: 3,4-Methylenedioxy derivatives by high performance liquid chromatography–quadrupole time of flight mass spectrometry. J Pharm Biomed Anal. 2013;81(82):13–9.

    Article  Google Scholar 

  47. Paul M, Ippisch J, Herrmann C, Guber S, Schultis W. Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach. Anal Bioanal Chem. 2014;406:4425–41.

    Article  CAS  Google Scholar 

  48. Zaitsu K, Nakayama H, Yamanaka M, Hisatsune K, Taki K, Asano T, et al. High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS. Int J Legal Med. 2015;129:1233–45.

    Article  Google Scholar 

  49. Ojanperä I, Mesihää S, Rasanen I, Pelander A, Ketola RA. Simultaneous identification and quantification of new psychoactive substances in blood by GC-APCI-QTOFMS coupled to nitrogen chemiluminescence detection without authentic reference standards. Anal Bioanal Chem. 2016;408:3395–400.

    Article  Google Scholar 

  50. Baciu T, Botello I, Borrull F, Calull M, Aguilar C. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. TrAC, Trends Anal Chem. 2015;74:89–108.

    Article  CAS  Google Scholar 

  51. Alechaga E, Moyano E, Galceran MT. Wide-range screening of psychoactive substances by FIA-HRMS: identification strategies. Anal Bioanal Chem. 2015;407:4567–80.

    Article  CAS  Google Scholar 

  52. Ostermann KM, Luf A, Lutsch NM, Dieplinger R, Mechtler TP, Metz TF, et al. MALDI Orbitrap mass spectrometry for fast and simplified analysis of novel street and designer drugs. Clin Chem Acta. 2014;433:254–8.

    Article  CAS  Google Scholar 

  53. Stojanovska N, Kelly T, Tahtouh M, Beavis A, Fu S. Analysis of amphetamine-type substances and piperazine analogues using desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2014;28:731–40.

    Article  CAS  Google Scholar 

  54. Stojanovska N, Tahtouh M, Kelly T, Beavis A, Fu S. Presumptive analysis of 4-methylmethcathinone (mephedrone) using desorption electrospray ionization-mass spectrometry (DESI-MS). Aust J Forensic Sci. 2014;46:411–23.

    Article  Google Scholar 

  55. Botch-Jones S, Foss J, Barajas D, Kero F, Young C, Weisenseel J. The detection of NBOMe designer drugs on blotter paper by high resolution time-of-flight mass spectrometry (TOFMS) with and without chromatography. Forensic Sci Int. 2016;267:89–95.

    Article  CAS  Google Scholar 

  56. Acton WJ, Lanza M, Agarwal B, Jürschik S, Sulzer P, Breiev K, et al. Headspace analysis of new psychoactive substances using a selective reagent ionisation-time of flight-mass spectrometer. Int J Mass Spectrom. 2014;360:28–38.

    Article  CAS  Google Scholar 

  57. Lanza M, Acton WJ, Sulzer P, Breiev K, Jürschik S, Jordan A, et al. Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances. J Mass Spectrom. 2015;50:427–31.

    Article  CAS  Google Scholar 

  58. Habala L, Valentová J, Pechová I, Fuknová M, Devinsky F. DART - LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids. Leg Med. 2016;20:27–31.

    Article  CAS  Google Scholar 

  59. Poklis JL, Wolf CE, ElJordi OI, Liu K, Zhang S, Poklis A. Analysis of the first- and second-generation Raving Dragon Novelty Bath Salts containing methylone and pentedrone. J Forensic Sci. 2015;60:S234–40.

    Article  CAS  Google Scholar 

  60. Musah RA, Cody RB, Domin MA, Lesiak AD, Dane AJ, Shepard JR. DART-MS in-source collision induced dissociation and high mass accuracy for new psychoactive substance determinations. Forensic Sci Int. 2014;244:42–9.

    Article  CAS  Google Scholar 

  61. Gwak S, Almirall JR. Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) and direct analysis in real time (DART) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS). Drug Test Anal. 2015;7:884–93.

    Article  CAS  Google Scholar 

  62. Qian Z, Hua Z, Liu C, Jia W. Four types of cannabimimetic indazole and indole derivatives, ADB-BINACA, AB-FUBICA, ADB-FUBICA, and AB-BICA, identified as new psychoactive substances. Forensic Toxicol. 2016;34:133–43.

    Article  CAS  Google Scholar 

  63. Kinyua J, Negreira N, Ibáñez M, Bijlsma L, Hernández F, Covaci A, et al. A data-independent acquisition workflow for qualitative screening of new psychoactive substances in biological samples. Anal Bioanal Chem. 2015;407:8773–85.

    Article  CAS  Google Scholar 

  64. Kinyua J, Negreira N, Miserez B, Causanilles A, Emke E, Gremeaux L, et al. Qualitative screening of new psychoactive substances in pooled urine samples from Belgium and United Kingdom. Sci Total Environ. 2016;573:1527–35.

    Article  CAS  Google Scholar 

  65. Oberacher H, Arnhard K. Current status of non-targeted liquid chromatography-tandem mass spectrometry in forensic toxicology. TrAC, Trends Anal Chem. 2016;84:94–105.

  66. Zuba D, Sekuła K. Identification and characterization of 2,5-dimethoxy-3,4-dimethyl-β-phenethylamine (2C-G) – a new designer drug. Drug Test Anal. 2013;5:549–59.

    Article  CAS  Google Scholar 

  67. Zuba D, Sekuła K, Buczek A. Identification and characterization of 2,5-dimethoxy-4-nitro-β-phenethylamine (2C-N) – a new member of 2C-series of designer drug. Forensic Sci Int. 2012;222:298–305.

    Article  CAS  Google Scholar 

  68. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–55.

    Article  CAS  Google Scholar 

  69. Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397:943–51.

    Article  CAS  Google Scholar 

  70. Heikman P, Sundström M, Pelander A, Ojanperä I. New psychoactive substances as part of polydrug abuse within opioid maintenance treatment revealed by comprehensive high-resolution mass spectrometric urine drug screening. Hum Psychopharmacol. 2016;31:44–52.

    Article  CAS  Google Scholar 

  71. Langer N, Lindigkeit R, Schiebel HM, Papke U, Ernst L, Beuerle T. Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the Spring of 2016. Forensic Sci Int. 2016;269:31–41.

    Article  CAS  Google Scholar 

  72. Lung D, Wilson N, Chatenet FT, LaCroix C, Gerona R. Non-targeted screening for novel psychoactive substances among agitated emergency department patients. Clin Toxicol. 2016;54:319–23.

    Article  CAS  Google Scholar 

  73. Ford LT, Berg JD. Analysis of legal high materials by UPLC-MS/TOF as part of a toxicology vigilance system. What are the most popular novel psychoactive substances in the UK? Ann Clin Biochem. 2016;54:219–29.

    Article  Google Scholar 

  74. Reid MJ, Baz-Lomba JA, Ryu Y, Thomas KV. Using biomarkers in wastewater to monitor community drug use: a conceptual approach for dealing with new psychoactive substances. Sci Total Environ. 2014;487:651–8.

    Article  CAS  Google Scholar 

  75. Ibáñez M, Sancho JV, Bijlsma L, van Nuijs ALN, Covaci A, Hernández F. Comprehensive analytical strategies based on high-resolution time-of-flight mass spectrometry to identify new psychoactive substances. TrAC, Trends Anal Chem. 2014;57:107–17.

    Article  Google Scholar 

  76. Knolhoff AM, Croley TR. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. J Chromatogr A. 2016;1428:86–96.

    Article  CAS  Google Scholar 

  77. Kneisel S, Westphal F, Bisel P, Brecht V, Broecker S, Auwärter V. Identification and structural characterization of the synthetic cannabinoid 3-(1-adamantoyl)-1-pentylindole as an additive in ‘herbal incense’. J Mass Spectrom. 2012;47:195–200.

    Article  CAS  Google Scholar 

  78. Grabenauer M, Krol WL, Wiley JL, Thomas BF. Analysis of synthetic cannabinoids using high-resolution mass spectrometry and mass defect filtering: implications for non-targeted screening of designer drugs. Anal Chem. 2012;84:5574–81.

    Article  CAS  Google Scholar 

  79. Sleno L. The use of mass defect in modern mass spectrometry. J Mass Spectrom. 2012;47:226–36.

    Article  CAS  Google Scholar 

  80. Broecker S, Herre S, Wüst B, Zweigenbaum J, Pragst F. Development and practical application of a library of CID accurate mass spectra of more than 2500 toxic compounds for systematic toxicological analysis by LC-QTOF-MS with data-dependent acquisition. Anal Bioanal Chem. 2011;400:101–17.

    Article  CAS  Google Scholar 

  81. Broecker S, Pragst F, Bakdash A, Herre S, Tsokos M. Combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with photodiode array detector (HPLC-DAD) in systematic toxicological analysis. Forensic Sci Int. 2011;212:215–26.

    Article  CAS  Google Scholar 

  82. Cawley A, Pasin D, Ganbat N, Ennis L, Smart C, Greer C, et al. The potential for complementary targeted/non-targeted screening of novel psychoactive substances in equine urine using liquid chromatography-high resolution accurate mass spectrometry. Anal Methods. 2016;8:1789–97.

    Article  CAS  Google Scholar 

  83. Ibáñez M, Bijlsma L, van Nuijs ALN, Sancho JV, Haro G, Covaci A, et al. Quadrupole-time-of-flight mass spectrometry screening for synthetic cannabinoids in herbal blends. J Mass Spectrom. 2013;48:685–94.

    Article  Google Scholar 

  84. Fornal E. Formation of odd-electron product ions in collision-induced fragmentation of electrospray-generated protonated cathinone derivatives: aryl α-primary amino ketones. Rapid Commun Mass Spectrom. 2013;27:1858–66.

    Article  CAS  Google Scholar 

  85. Fornal E. Study of collision-induced dissociation of electrospray-generated protonated cathinones. Drug Test Anal. 2014;6:705–15.

    Article  CAS  Google Scholar 

  86. Pasin D, Cawley A, Bidny S, Fu S. Characterization of hallucinogenic phenethylamines using high-resolution mass spectrometry for non-targeted screening purposes. Drug Test Anal. 2017. doi:10.1002/dta.2171.

    Google Scholar 

  87. Fornal E, Stachniuk A, Wojtyla A. LC-Q/TOF mass spectrometry data driven identification and spectroscopic characterization of a new 3,4-methylenedioxy-N-benzyl cathinone (BMDP). J Pharm Biomed Anal. 2013;72:139–44.

    Article  CAS  Google Scholar 

  88. Strano Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, et al. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom. 2014;28:1904–16.

    Article  CAS  Google Scholar 

  89. Andersson M, Diao X, Wohlfarth A, Scheidweiler KB, Huestis MA. Metabolic profiling of new synthetic cannabinoids AMB and 5F-AMB by human hepatocyte and liver microsome incubations and high-resolution mass spectrometry. Rapid Commun Mass Spectrom. 2016;30:1067–78.

    Article  CAS  Google Scholar 

  90. Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA. High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem. 2016;62:157–69.

    Article  CAS  Google Scholar 

  91. Ellefsen KN, Wohlfarth A, Swortwood MJ, Diao X, Concheiro M, Huestis MA. 4-Methoxy-alpha-PVP: in silico prediction, metabolic stability, and metabolite identification by human hepatocyte incubation and high-resolution mass spectrometry. Forensic Toxicol. 2016;34:61–75.

    Article  CAS  Google Scholar 

  92. Swortwood MJ, Ellefsen KN, Wohlfarth A, Diao X, Concheiro-Guisan M, Kronstrand R, et al. First metabolic profile of PV8, a novel synthetic cathinone, in human hepatocytes and urine by high-resolution mass spectrometry. Anal Bioanal Chem. 2016;408:4845–56.

    Article  CAS  Google Scholar 

  93. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Biotransformation of synthetic cannabinoids JWH-018, JWH-073, and AM2201 by Cunninghamella elegans. Forensic Sci Int. 2016;261:33–42.

    Article  CAS  Google Scholar 

  94. Wohlfarth A, Pang S, Zhu M, Gandhi AS, Scheidweiler KB, Liu HF, et al. First metabolic profile of XLR-11, a novel synthetic cannabinoid, obtained by using human hepatocytes and high-resolution mass spectrometry. Clin Chem. 2013;59:1638–48.

    Article  CAS  Google Scholar 

  95. Watanabe S, Kuzhiumparambil U, Nguyen MA, Cameron J, Fu S. Metabolic profile of synthetic cannabinoids 5F-PB-22, PB-22, XLR-11, and UR-144 by Cunninghamella elegans. AAPS J. 2017. doi:10.1208/s12248-017-0078-4.

    Google Scholar 

  96. Caspar AT, Helfer AG, Michely JA, Auwärter V, Brandt SD, Meyer MR, et al. Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MS(n), and LC-HR-MS/MS. Anal Bioanal Chem. 2015;407:6697–719.

    Article  CAS  Google Scholar 

  97. Franz F, Angerer V, Moosmann B, Auwärter V. Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples. Drug Test Anal. 2016. doi:10.1002/dta.2049.

    Google Scholar 

  98. Lobo Vicente J, Chassaigne H, Holland MV, Reniero F, Kolář K, Tirendi S, et al. Systematic analytical characterization of new psychoactive substances: a case study. Forensic Sci Int. 2016;265:107–15.

    Article  CAS  Google Scholar 

  99. Cannaert A, Storme J, Franz F, Auwärter V, Stove CP. Detection and activity profiling of synthetic cannabinoids and their metabolites with a newly developed bioassay. Anal Chem. 2016;88:11476–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasin, D., Cawley, A., Bidny, S. et al. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Anal Bioanal Chem 409, 5821–5836 (2017). https://doi.org/10.1007/s00216-017-0441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0441-4

Keywords

Navigation