Skip to main content
Log in

High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient’s safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 μm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 μmol L−1 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leavy O. Therapeutic antibodies: past, present and future. Nat Rev Immunol. 2010;10(5):297. doi:10.1038/nri2763.

    Article  CAS  Google Scholar 

  2. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science (New York, NY). 2013;341(6151):1192–8. doi:10.1126/science.1241145.

    Article  CAS  Google Scholar 

  3. Kuystermans D, Al-Rubeai M. Biopharmaceutical products from animal cell culture. In: Al-Rubeai M, editor. Animal cell culture. Cham: Springer International Publishing; 2015. p. 717–57. doi:10.1007/978-3-319-10320-4_23.

    Google Scholar 

  4. Vázquez-Rey M, Da L. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108(7):1494–508. doi:10.1002/bit.23155.

    Article  Google Scholar 

  5. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33. doi:10.1074/jbc.M110.160457.

    Article  CAS  Google Scholar 

  6. Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–7. doi:10.1016/j.copbio.2014.08.001.

    Article  CAS  Google Scholar 

  7. Paul AJ, Schwab K, Hesse F. Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol. 2014;14(1):99. doi:10.1186/s12896-014-0099-3.

    Article  Google Scholar 

  8. Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8(3):E572–9. doi:10.1208/aapsj080366.

    Article  CAS  Google Scholar 

  9. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28(4):920–33. doi:10.1007/s11095-010-0297-1.

    Article  Google Scholar 

  10. Das TK. Protein particulate detection issues in biotherapeutics development—current status. AAPS PharmSciTech. 2012;13(2):732–46. doi:10.1208/s12249-012-9793-4.

    Article  CAS  Google Scholar 

  11. Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, Hawe A. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35. doi:10.1002/jps.23001.

    Article  Google Scholar 

  12. Ripple DC, Montgomery CB, Hu Z. An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates. J Pharm Sci. 2015;104(2):666–77. doi:10.1002/jps.24287.

    Article  CAS  Google Scholar 

  13. Weinbuch D, Jiskoot W, Hawe A. Light obscuration measurements of highly viscous solutions: sample pressurization overcomes underestimation of subvisible particle counts. AAPS J. 2014;16(5):1128–31. doi:10.1208/s12248-014-9629-0.

    Article  Google Scholar 

  14. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–15. doi:10.1208/s12248-010-9233-x.

    Article  CAS  Google Scholar 

  15. Barnard JG, Singh S, Randolph TW, Carpenter JF. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci. 2011;100(2):492–503. doi:10.1002/jps.22305.

    Article  CAS  Google Scholar 

  16. Huang C-T, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–71. doi:10.1002/jps.21575.

    Article  CAS  Google Scholar 

  17. Lawler DM. Turbidimetry and nephelometry. In: Worsfold PJT, Townshend A, Poole, CF, editors. Encyclopedia of analytical sciences. Elsevier; p 343–351. doi:10.1016/B0-12-369397-7/00718-4.

  18. Arakawa T, Philo JS, Ejima D, Tsumoto K, Arisaka F. Aggregation analysis of therapeutic proteins, part 2: analytical ultracentrifugation and dynamic light scattering. Bioprocess Int. 2007;5:36–47.

    CAS  Google Scholar 

  19. Demeule B, Gurny R, Arvinte T. Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm. 2007;329(1–2):37–45. doi:10.1016/j.ijpharm.2006.08.024.

    Article  CAS  Google Scholar 

  20. Paul AJ, Schwab K, Prokoph N, Haas E, Handrick R, Hesse F. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants. Anal Bioanal Chem. 2015; doi:10.1007/s00216-015-8672-8.

    Google Scholar 

  21. Rohm M, Handl A, Konig M, Mavoungou C, Handrick R, Schindowski K. Data of rational process optimization for the production of a full IgG and its Fab fragment from hybridoma cells. Data Brief. 2016;8:426–35. doi:10.1016/j.dib.2016.05.067.

    Article  Google Scholar 

  22. Katayama DS, Nayar R, Chou DK, Campos J, Cooper J, Vander Velde DG, Villarete L, Liu CP, Cornell Manning M. Solution behavior of a novel type 1 interferon, interferon-tau. J Pharm Sci. 2005;94(12):2703–15. doi:10.1002/jps.20461.

    Article  CAS  Google Scholar 

  23. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848(1):28–39. doi:10.1016/j.jchromb.2006.09.026.

    Article  CAS  Google Scholar 

  24. Joshi V, Shivach T, Kumar V, Yadav N, Rathore A. Avoiding antibody aggregation during processing: establishing hold times. Biotechnol J. 2014;9(9):1195–205. doi:10.1002/biot.201400052.

    Article  CAS  Google Scholar 

  25. Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci U S A. 2012;109(36):14446–51. doi:10.1073/pnas.1208228109.

    Article  CAS  Google Scholar 

  26. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998;1(5):639–48.

    Article  CAS  Google Scholar 

  27. Bickel F, Herold EM, Signes A, Romeijn S, Jiskoot W, Kiefer H. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: characterization of aggregates and factors affecting aggregation. Eur J Pharm Biopharm. 2016;107:310–20. doi:10.1016/j.ejpb.2016.07.020.

    Article  CAS  Google Scholar 

  28. Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. Eur J Pharm Sci. 2009;38(2):79–87. doi:10.1016/j.ejps.2009.06.001.

    Article  CAS  Google Scholar 

  29. Kueltzo LA, Wang WEI, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci. 2008;97(5):1801–12. doi:10.1002/jps.

    Article  CAS  Google Scholar 

  30. Miller MA, Khan TA, Kaczorowski KJ, Wilson BK, Dinin AK, Borwankar AU, Rodrigues MA, Truskett TM, Johnston KP, Maynard JA. Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability. J Pharm Sci. 2012;101(10):3763–78. doi:10.1002/jps.23256.

    Article  CAS  Google Scholar 

  31. Respaud R, Marchand D, Parent C, Pelat T, Thullier P, Tournamille JF, Viaud-Massuard MC, Diot P, Si-Tahar M, Vecellio L, Heuze-Vourc'h N. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs. 2014;6(5):1347–55. doi:10.4161/mabs.29938.

    Article  Google Scholar 

  32. Siekmeier R, Scheuch G. Systemic treatment by inhalation of macromolecules—principles, problems, and examples. J Physiol Pharmacol. 2008;59(Suppl. 6):53–79.

    Google Scholar 

  33. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54(6):503–12. doi:10.1002/(SICI)1097-0290(19970620)54:6<503::AID-BIT1>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  34. Yano YF, Uruga T, Tanida H, Toyokawa H, Terada Y, Takagaki M, Yamada H. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface. Langmuir. 2009;25(1):32–5. doi:10.1021/la803235x.

    Article  CAS  Google Scholar 

  35. Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78(1):394–404. doi:10.1016/S0006-3495(00)76602-1.

    Article  CAS  Google Scholar 

  36. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. doi:10.1007/s11095-010-0073-2.

    Article  CAS  Google Scholar 

  37. Zolls S, Weinbuch D, Wiggenhorn M, Winter G, Friess W, Jiskoot W, Hawe A. Flow imaging microscopy for protein particle analysis—a comparative evaluation of four different analytical instruments. AAPS J. 2013;15(4):1200–11. doi:10.1208/s12248-013-9522-2.

    Article  Google Scholar 

  38. Hawe A, Schaubhut F, Geidobler R, Wiggenhorn M, Friess W, Rast M, de Muynck C, Winter G. Pharmaceutical feasibility of sub-visible particle analysis in parenterals with reduced volume light obscuration methods. Eur J Pharm Biopharm. 2013;85(3 Pt B):1084–7. doi:10.1016/j.ejpb.2013.02.004.

    Article  CAS  Google Scholar 

  39. Hertel S, Pohl T, Friess W, Winter G. That’s cool!—nebulization of thermolabile proteins with a cooled vibrating mesh nebulizer. Eur J Pharm Biopharm. 2014;87(2):357–65. doi:10.1016/j.ejpb.2014.03.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Federal Ministry of Education and Research (Grant No. 0315342A) and by the Cooperative Research Training Group Pharmaceutical Biotechnology stated by the Postgraduate Scholarships Act of the Ministry for Science, Research, and Arts of the federal state government of Baden-Württemberg. Further funding was obtained by the German Research Foundation (DFG) through the International Graduate School in Molecular Medicine at Ulm University. In addition, the authors are grateful to Rentschler Biotechnologie GmbH (Laupheim, Germany) for providing mAb1 and to Boehringer Ingelheim Pharma GmbH & Co. KG (Ingelheim, Germany) for offering mAb2 and mAb3. The mAb4 was kindly donated by Kenneth Siddle (Cambridge University, England).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Jesuran Paul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 1897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A.J., Bickel, F., Röhm, M. et al. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging. Anal Bioanal Chem 409, 4149–4156 (2017). https://doi.org/10.1007/s00216-017-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0362-2

Keywords

Navigation