Skip to main content
Log in

Quantification of antibody coupled to magnetic particles by targeted mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantifying the amount of antibody on magnetic particles is a fundamental, but often overlooked step in the development of magnetic separation-based immunoaffinity enrichment procedures. In this work, a targeted mass spectrometry (MS)-based method was developed to directly measure the amount of antibody covalently bound to magnetic particles. Isotope-dilution liquid chromatography-tandem MS (ID-LC-MS/MS) has been extensively employed as a gold-standard method for protein quantification. Here, we demonstrate the utility of this methodology for evaluating different antibody coupling processes to magnetic particles of different dimensions. Synthesized magnetic nanoparticles and pre-functionalized microparticles activated with glutaraldehyde or epoxy surface groups were used as solid supports for antibody conjugation. The key steps in this quantitative approach involved an antibody-magnetic particle coupling process, a wash step to remove unreacted antibody, followed by an enzymatic digestion step (in situ with the magnetic particles) to release tryptic antibody peptides. Our results demonstrate that nanoparticles more efficiently bind antibody when compared to microparticles, which was expected due to the larger surface area per unit mass of the nanoparticles compared to the same mass of microparticles. This quantitative method is shown to be capable of accurately and directly measuring antibody bound to magnetic particles and is independent of the conjugation method or type of magnetic particle.

Schematic illustration of the isotope-dilution mass spectrometry-based workflow to directly measure antibody bound to magnetic particles (MP)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Zhang XM, Deng CH. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev. 2013;42(21):8517–39. doi:10.1039/c3cs60156k.

    Article  CAS  Google Scholar 

  2. Peter JF, Otto AM. Magnetic particles as powerful purification tool for high sensitive mass spectrometric screening procedures. Proteomics. 2010;10(4):628–33. doi:10.1002/pmic.200800535.

    Article  CAS  Google Scholar 

  3. Mani V, Chikkaveeraiah BV, Rusling JF. Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring. Expert Opin Med Diagn. 2011;5(5):381–91. doi:10.1517/17530059.2011.607161.

    Article  CAS  Google Scholar 

  4. Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol. 2004;2(1):7. doi:10.1186/1477-044x-2-7.

    Article  Google Scholar 

  5. Callipo L, Caruso G, Foglia P, Gubbiotti R, Samperi R, Lagana A. Immunoprecipitation on magnetic beads and liquid chromatography-tandem mass spectrometry for carbonic anhydrase II quantification in human serum. Anal Biochem. 2010;400(2):195–202. doi:10.1016/j.ab.2010.01.039.

    Article  CAS  Google Scholar 

  6. Whiteaker JR, Zhao L, Zhang HY, Feng LC, Piening BD, Anderson L, et al. Antibody-based enrichment of peptides for mass-spectrometry-based quantification on magnetic beads of serum biomarkers. Anal Biochem. 2007;362(1):44–54. doi:10.1016/j.ab.2006.12.023.

    Article  CAS  Google Scholar 

  7. Lowenthal MS, Gasca-Aragon H, Schiel JE, Dodder NG, Bunk DM. A quantitative LC-MS/MS method for comparative analysis of capture-antibody affinity toward protein antigens. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(26):2726–32. doi:10.1016/j.jchromb.2011.07.037.

    Article  CAS  Google Scholar 

  8. Berna MJ, Zhen YJ, Watson DE, Hale JE, Ackermann BL. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Anal Chem. 2007;79(11):4199–205. doi:10.1021/ac070051f.

    Article  CAS  Google Scholar 

  9. Kilpatrick EL, Bunk DM. Reference measurement procedure development for C-reactive protein in human serum. Anal Chem. 2009;81(20):8610–6. doi:10.1021/ac901597h.

    Article  CAS  Google Scholar 

  10. Schneck NA, Lowenthal M, Phinney K, Lee SB. Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers. Nanomedicine. 2015;10(3):433–46. doi:10.2217/nnm.14.188.

    Article  CAS  Google Scholar 

  11. Gao MX, Deng CH, Zhang XM. Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis. Expert Rev Proteomics. 2011;8(3):379–90. doi:10.1586/epr.11.25.

    Article  CAS  Google Scholar 

  12. Roque ACA, Bispo S, Pinheiro ARN, Antunes JMA, Goncalves D, Ferreira HA. Antibody immobilization on magnetic particles. J Mol Recognit. 2009;22(2):77–82. doi:10.1002/jmr.913.

    Article  CAS  Google Scholar 

  13. Koh I, Wang X, Varughese B, Isaacs L, Ehrman SH, English DS. Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. J Phys Chem B. 2006;110(4):1553–8. doi:10.1021/jp0556310.

    Article  CAS  Google Scholar 

  14. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, et al. Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods. 2010;356(1–2):60–9. doi:10.1016/j.jim.2010.02.007.

    Article  CAS  Google Scholar 

  15. Horak D, Babic M, Mackova H, Benes MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci. 2007;30(11):1751–72. doi:10.1002/jssc.200700088.

    Article  CAS  Google Scholar 

  16. Hasany SF, Abdurahman NH, Sunarti AR, Jose R. Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci. 2013;9(5):561–75.

    Article  CAS  Google Scholar 

  17. Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials. 2005;26(15):2723–32. doi:10.1016/j.biomaterials.2004.07.047.

    Article  CAS  Google Scholar 

  18. Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 2005;26(29):5898–906. doi:10.1016/j.biomaterials.2005.02.038.

    Article  CAS  Google Scholar 

  19. Puertas S, Batalla P, Moros M, Polo E, del Pino P, Guisan JM, et al. Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle - antibody conjugates. ACS Nano. 2011;5(6):4521–8. doi:10.1021/nn200019s.

    Article  CAS  Google Scholar 

  20. Casserly U, Mooney MT, Troy D. Standardisation and application of a semi-quantitative SDS-PAGE method for measurement of myofibrillar protein fragments in bovine longissimus muscle. Food Chem. 2000;69(4):379–85. doi:10.1016/s0308-8146(00)00055-8.

    Article  CAS  Google Scholar 

  21. Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteome. 2009;72(5):740–9. doi:10.1016/j.jprot.2009.03.007.

    Article  CAS  Google Scholar 

  22. Barr JR, Maggio VL, Patterson DG, Cooper GR, Henderson LO, Turner WE, et al. Isotope dilution mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem. 1996;42(10):1676–82.

    CAS  Google Scholar 

  23. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:1–14. doi:10.1038/msb.2008.61.

    Article  Google Scholar 

  24. Bunk DM, Dalluge JJ, Welch MJ. Heterogeneity in human cardiac troponin I standards. Anal Biochem. 2000;284(2):191–200. doi:10.1006/abio.2000.4710.

    Article  CAS  Google Scholar 

  25. Cha J, Lee JS, Yoon SJ, Kim YK, Lee JK. Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters. RSC Adv. 2013;3(11):3631–7. doi:10.1039/c3ra21639j.

    Article  CAS  Google Scholar 

  26. Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc. 2008;130(1):28–9. doi:10.1021/ja0777584.

    Article  CAS  Google Scholar 

  27. McCarthy SA, Davies GL, Gun’ko YK. Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc. 2012;7(9):1677–93. doi:10.1038/nprot.2012.082.

    Article  CAS  Google Scholar 

  28. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8. doi:10.1093/bioinformatics/btq054.

    Article  CAS  Google Scholar 

  29. He B, Kim SK, Son SJ, Lee SB. Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols. Nanomedicine. 2010;5(1):77–88. doi:10.2217/nnm.09.92.

    Article  CAS  Google Scholar 

  30. Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Current protocols in molecular biology. John Wiley & Sons, Inc.; 2009.

  31. Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater. 2010;20(11):1767–77. doi:10.1002/adfm.201000188.

    Article  CAS  Google Scholar 

  32. Noble JE, Bailey MJA. Quantitation of protein. In: Burgess RR, Deutscher MP, editors. Methods in enzymology. 2nd ed. San Diego: Elsevier Academic Press Inc; 2009. p. 73–95.

    Google Scholar 

  33. Rogstad SM, Sorkina T, Sorkin A, Wu CC. Improved precision of proteomic measurements in immunoprecipitation based purifications using relative quantitation. Anal Chem. 2013;85(9):4301–6. doi:10.1021/ac4002222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Maryland NanoCenter and its AIMLab. We also thank Dr. Sz-Chian Liou for his assistance with imaging the magnetic particles by TEM. We acknowledge the support of the Professional Research Experience Program (PREP) through the University of Maryland, College Park and the National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Bok Lee or Mark S. Lowenthal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Disclaimer

Certain commercial equipment, instruments, and materials are identified in this paper to specify the experimental procedures and analytical methods adequately. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneck, N.A., Phinney, K.W., Lee, S.B. et al. Quantification of antibody coupled to magnetic particles by targeted mass spectrometry. Anal Bioanal Chem 408, 8325–8332 (2016). https://doi.org/10.1007/s00216-016-9948-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9948-3

Keywords

Navigation