Skip to main content
Log in

Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2′-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become “effective,” thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay.

Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ab1 :

Anti-VV1

Ab2 :

Anti-VV2

APW:

Alkaline peptone water

BSA:

Bovine serum albumin

EC:

Enterobacter cloacae

ECL:

Electrochemiluminescence

ECLIA:

Electrochemiluminescence immunoassay

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

GLD:

Glutaraldehyde

GO:

Graphene oxide

IHP:

Interior Helmholtz plane

IMBs:

Immunomagnetic beads

LAMP:

Loop-mediated isothermal amplification

MGCE:

Modified magnetic glass carbon electrode

MPN:

Most probable number

NHS:

N-Hydroxysuccinimide

OHP:

Outer Helmholtz plane

PCR:

Polymerase chain reaction

Ru-NH2 :

(2,2′-Bipyridine)(5-aminophenanthroline)ruthenium

SM:

Shewanella marisflavi

TPrA:

Tripropylamine

VH:

Vibrio harveyi

VP:

Vibrio parahaemolyticus

VV:

Vibrio vulnificus

References

  1. Horseman MA, Surani S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis. 2011;15:e157–66.

    Article  Google Scholar 

  2. Harwood VJ, Gandhi JP, Wright AC. Methods for isolation and confirmation of Vibrio vulnificus from oysters and environmental sources: a review. J Microbiol Methods. 2004;59:301–16.

    Article  CAS  Google Scholar 

  3. Jones MK, Oliver JD. Vibrio vulnificus: disease and pathogenesis. Infect Immun. 2009;77:1723–33.

    Article  CAS  Google Scholar 

  4. Oliver JD. Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology. Microb Ecol. 2013;65:793–9.

    Article  Google Scholar 

  5. Ye M, Huang YX, Chen HQ. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiol. 2012;32:179–84.

    Article  Google Scholar 

  6. Cantet F, Hervio-Heath D, Caro A, Mennec CL, Monteil C, Quéméré C, et al. Quantification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons. Res Microbiol. 2013;164:867–74.

    Article  CAS  Google Scholar 

  7. Parker RW, Lewis DH. Sandwich enzyme-linked immunosorbent assay for Vibrio vulnificus hemolysin to detect V. vulnificus in environmental specimens. Appl Environ Microbiol. 1995;61:476–80.

    CAS  Google Scholar 

  8. Kassim N, Mtenga AB, Lee WG, Kim JS, Shim WB, Chung DH. Production of Coturnix quail immunoglobulins Y (IgYs) against Vibrio parahaemolyticus and Vibrio vulnificus. Food Sci Biotechnol. 2011;20:1577–83.

    Article  CAS  Google Scholar 

  9. Marco-noales E, Milάn M, Fouz B, Sanjuάn E, Amaro C. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus Serovar E (Biotype 2). Appl Environ Microbiol. 2001;67:4717–25.

    Article  CAS  Google Scholar 

  10. Surasilp T, Longyant S, Rukpratanporn S, Sridulyakul P, Sithigorngul P, Chaivisuthangkura P. Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene. Mol Cell Probes. 2011;25:158–63.

    Article  CAS  Google Scholar 

  11. Han FF, Wang F, Ge BB. Detecting potentially virulent Vibrio vulnificus strains in raw oysters by quantitative loop-mediated isothermal amplification. Appl Environ Microbiol. 2011;77:2589–95.

    Article  CAS  Google Scholar 

  12. Cañigral I, Moreno Y, Alonso JL, González A, Ferrús MA. Detection of Vibrio vulnificus in seafood, seawater and wastewater samples from a Mediterranean coastal area. Microbiol Res. 2010;165:657–64.

    Article  Google Scholar 

  13. Wang SH, Levin RE. Rapid quantification of Vibrio vulnificus in clams (Protochaca staminea) using real-time PCR. Food Microbiol. 2006;23:757–61.

    Article  CAS  Google Scholar 

  14. Depaola A, Motes ML, Cook DW, Veazey J, Garthright WE, Blodgett R. Evaluation of an alkaline phosphatase-labeled DNA probe for enumeration of Vibrio vulnificus in Gulf Coast oysters. J Microbiol Methods. 1997;29:115–20.

    Article  CAS  Google Scholar 

  15. Jadeja R, Janes ME, Simonson JG. Development of rapid and sensitive antiflagellar monoclonal antibody based lateral flow device for the detection of Vibrio vulnificus from oyster homogenate. Food Control. 2015;56:110–13.

    Article  CAS  Google Scholar 

  16. Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    Article  CAS  Google Scholar 

  17. Deiss F, Lafratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc. 2009;131:6088–9.

    Article  CAS  Google Scholar 

  18. Liu ZY, Qi WJ, Xu GB. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

    Article  CAS  Google Scholar 

  19. Wu MS, Shi HW, He LJ, Xu JJ, Chen HY. Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer. Anal Chem. 2012;84:4207–13.

    Article  CAS  Google Scholar 

  20. Zhuo Y, Liao N, Chai YQ, Gui GF, Zhao M, Han J, et al. Ultrasensitive apurinic/apyrimidinic endonuclease 1 immunosensing based on self-enhanced electrochemiluminescence of a Ru (II) complex. Anal Chem. 2014;86:1053–60.

    Article  CAS  Google Scholar 

  21. Wang HJ, Yuan R, Chai YQ, Cao YL, Gan XX, Chen YF, et al. An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor for streptococcus suis serotype 2 based on L-cysteine combined with mimicking bi-enzyme synergetic catalysis to in situ generate coreactant. Biosens Bioelectron. 2013;43:63–8.

    Article  Google Scholar 

  22. Li ZJ, Yang HY, Sun LJ, Qi HL, Gao Q, Zhang CX. Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes. Sensor Actuators B Chem. 2015;210:468–74.

    Article  CAS  Google Scholar 

  23. Sha YH, Zhang X, Li WR, Wu L, Wu W, Wang S, et al. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta. 2016;147:220–5.

    Article  CAS  Google Scholar 

  24. Chen ZH, Liu Y, Wang YZ, Zhao X, Li JH. Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru(bpy)3 2+-doped silica nanoprobe. Anal Chem. 2013;85:4431–8.

    Article  CAS  Google Scholar 

  25. Perez-Tejeda P, Prado-Gotor R, Grueso EM. Electrochemiluminescence of the [Ru(bpy)3]2+ complex: the coreactant effect of PAMAM dendrimers in an aqueous medium. Inorg Chem. 2012;51:10825–31.

    Article  CAS  Google Scholar 

  26. Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron. 2014;54:393–407.

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR. Introduction and overview of electrode processes. Electrochemical Methods, Fundamentals and Applications, 2nd ed; John Wiley & Sons, New York, 2001; 12–14.

  28. Du SP, Guo ZY, Chen BB, Sha YH, Jiang XH, Li X, et al. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres. Biosens Bioelectron. 2014;53:135–41.

    Article  CAS  Google Scholar 

  29. Nakamura M, Kaminaga H, Endo O, Tajiri H, Sakata O, Hoshi N. Structural dynamics of the electrical double layer during capacitive charging/discharging processes. J Phys Chem C. 2014;118:22136–40.

    Article  CAS  Google Scholar 

  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  31. Myung S, Solanki A, Kim C, Park J, Kim KS, Lee KB. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater. 2011;23:2221–5.

    Article  CAS  Google Scholar 

  32. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282–6.

    Article  CAS  Google Scholar 

  33. Fang YX, Wang EK. Electrochemical biosensors on platforms of graphene. Chem Commun. 2013;49:9526–39.

    Article  CAS  Google Scholar 

  34. Li YQ, Yu T, Yang TY, Zheng LX, Liao K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater. 2012;24:3426–31.

    Article  CAS  Google Scholar 

  35. Morales-Narváez E, Merkoçi A. Graphene oxide as an optical biosensing platform. Adv Mater. 2012;24:3298–308.

    Article  Google Scholar 

  36. Acharya G, Chang CL, Doorneweerd DD, Vlashi E, Henne WA, Hartmann LC, et al. Immunomagnetic diffractometry for detection of diagnostic serum markers. J Am Chem Soc. 2007;129:15824–9.

    Article  CAS  Google Scholar 

  37. Tudorache M, Tencaliec A, Bala C. Magnetic beads-based immunoassay as a sensitive alternative for atrazine analysis. Talanta. 2008;77:839–43.

    Article  CAS  Google Scholar 

  38. Xu J, Yin WW, Zhang YY, Yi J, Meng M, Wang YB, et al. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk. Food Chem. 2012;134:2526–31.

    Article  CAS  Google Scholar 

  39. Schreier S, Doungchawee G, Triampo D, Wangroongsarb P, Hartskeerl RA, Triampo W. Development of a magnetic bead fluorescence microscopy immunoassay to detect and quantify Leptospira in environmental water samples. Acta Trop. 2012;122:119–25.

    Article  Google Scholar 

  40. Wei B, Li F, Yang HC, Yu L, Zhao KH, Zhou R, et al. Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacillus pleuropneumoniae. Biosens Bioelectron. 2012;35:390–3.

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;806:1339.

    Article  Google Scholar 

  42. Guo ZY, Sha YH, Hu YF, Wang S. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay. Chem Commun. 2016;52:4621–4.

    Article  CAS  Google Scholar 

  43. Chen XM, Wu GH, Chen JM, Jiang YQ, Chen G, Oyama M, et al. A novel electrochemiluminescence sensor based on bis(2,2′-bipyridine)-5-amino-1, 10-phenanthroline ruthenium (II) covalently combined with graphite oxide. Biosens Bioelectron. 2010;26:872–6.

    Article  CAS  Google Scholar 

  44. Namba Y, Usami M, Suzuki O. Highly sensitive electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads. Anal Sci. 1999;15:1087–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Guo or Xiurong Su.

Ethics declarations

Funding

Financial supports from the National Natural Science Foundation of China (81273130, 41576098, 21571110), State Oceanic Administration of the People’s Republic of China (201105007), and Science and Technology Department of Zhejiang Province of China (2016C33176) are gratefully acknowledged. This work was also sponsored by K.C. Wong Magna Fund in Ningbo University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Sha, Y., Hu, Y. et al. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Anal Bioanal Chem 408, 7203–7211 (2016). https://doi.org/10.1007/s00216-016-9851-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9851-y

Keywords

Navigation