Skip to main content
Log in

Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nicotine (Nic) distribution in human fluids and tissues has a deleterious effect on human health. In addition to its poisoning profile, Nic may contribute to the particular impact of smoking on human reproduction. Although present in seminal fluid, still nobody knows whether nicotine is available in sperm or not. Herein, we developed and validated a new bioanalytical method, for simultaneous determination of Nic, cotinine (Cot), and nicotine N′-oxide (Nox) in human plasma, semen, and sperm by LC-ESI-orbitrap-MS. Blood and semen samples were collected from 12 healthy smoking volunteers in this study. Sperm bodies were then separated quantitatively from 1 mL of semen samples by centrifugation. The developed method was fully validated for plasma following European and American guidelines for bioanalytical method validation, and partial validation was applied to semen analysis. Plasma, semen, and sperm samples were treated by trichloroacetic acid solution for protein direct precipitation in single extraction step. The established calibration range for Nic and Nox in plasma and semen was linear between 5 and 250 ng/mL, and for Cot between 10 and 500 ng/mL. Nic and Cot were detected in human sperm at concentrations as high as in plasma. In addition, Nox was present in semen and sperm but not in plasma.

Nicotine correlation between plasma and semen a; Nicotine correlation between semen and sperm c; Cotinine correlation between plasma and semen b; Cotinine correlation between semen and sperm d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362:2295–303. doi:10.1056/NEJMra0809890.

    Article  CAS  Google Scholar 

  2. Kovacic P, Cooksy A. Iminium metabolite mechanism for nicotine toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. 2005;64:104–11. doi:10.1016/j.mehy.2004.03.048.

    Article  CAS  Google Scholar 

  3. Mayer B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 2014;88:5–7. doi:10.1007/s00204-013-1127-0.

    Article  CAS  Google Scholar 

  4. Ujváry I. Nicotine and Other Insecticidal Alkaloids. Nicotinoid Insectic Nicotinic Acetylcholine Recept 29–69. 1999.doi: 10.1007/978-4-431-67933-2_2

  5. Lee PN. Epidemiological evidence relating snus to health—an updated review based on recent publications. Harm Reduct J. 2013;10:36. doi:10.1186/1477-7517-10-36.

    Article  CAS  Google Scholar 

  6. Willis D, Popovech M, Gany F, Zelikoff J. Toxicology of smokeless tobacco: implications for immune, reproductive, and cardiovascular systems. J Toxicol Environ Health B Crit Rev. 2012;15:317–31. doi:10.1080/10937404.2012.689553.

    Article  CAS  Google Scholar 

  7. Arabi M. Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia. 2004;36:305–10. doi:10.1111/j.1439-0272.2004.00623.x.

    Article  CAS  Google Scholar 

  8. Demirhan O, Demir C, Tunc E, Nandiklioglu N, Sutcu E, Sadikoglu N, et al. The genotoxic effect of nicotine on chromosomes of human fetal cells: the first report described as an important study. Inhal Toxicol. 2011;23:829–34. doi:10.3109/08958378.2011.617398.

    Article  CAS  Google Scholar 

  9. Oyeyipo IP, Raji Y, Emikpe BO, Bolarinwa AF. Effects of nicotine on sperm characteristics and fertility profile in adult male rats: a possible role of cessation. J Reprod Infertil. 2011;12:201–7.

    CAS  Google Scholar 

  10. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60. doi:10.1007/978-3-540-69248-5_2.

    Article  CAS  Google Scholar 

  11. Fischer L, Mikus F, Jantos R, Skopp G. Simultaneous quantification of tobacco alkaloids and major phase I metabolites by LC-MS/MS in human tissue. Int J Legal Med. 2015;129:279–87. doi:10.1007/s00414-014-1093-y.

    Article  Google Scholar 

  12. Urakawa N, Nagata T, Kudo K, Kimura K, Imamura T. Original articles Simultaneous determination of nicotine and cotinine in various human tissues using capillary gas chromatography / mass spectrometry. 1994. 232–236.

  13. Tricker AR. Biomarkers derived from nicotine and its metabolites: a review. Beitrage zur Tab Int Contrib to Tob Res. 2006;22:147–75.

    CAS  Google Scholar 

  14. Pacifici R, Altieri I, Gandini L, Lenzi A, Passa AR, Pichini S, et al. Environmental tobacco smoke: nicotine and cotinine concentration in semen. Environ Res. 1995;68:69–72. doi:10.1006/enrs.1995.1009.

    Article  CAS  Google Scholar 

  15. Vine MF, Hulka BS, Margolin BH, Truong YK, Hu P-C, Schramm MM, et al. Cotinine concentrations in semen, urine, and blood of smokers and nonsmokers. Am J Public Health. 1993;83:1335–8. doi:10.2105/AJPH.83.9.1335.

    Article  CAS  Google Scholar 

  16. Macaron CI, Macaron Z, Maalouf MTKG. Cotinine in seminal fluids of smokers, passive smokers and nonsmokers. J Med Liban. 1997;45(1):46.

    CAS  Google Scholar 

  17. Abdallaha IA, Hammell DC, Stinchcomb AL, Hassan HE. A fully validated LC-MS/MS method for simultaneous determination of nicotine and its metabolite cotinine in human serum and its application to a pharmacokinetic study after using nicotine transdermal delivery systems with standard heat application in adul. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1020:67–77. doi:10.1016/j.jchromb.2016.03.020.

    Article  CAS  Google Scholar 

  18. Ghazi AM, Salhab AS, Arafat TA, Irshaid YM. Effect of mint drink on metabolism of nicotine as measured by nicotine to cotinine ratio in urine of Jordanian smoking volunteers. Nicotine Tob Res. 2011;13:661–7. doi:10.1093/ntr/ntr054.

    Article  CAS  Google Scholar 

  19. Piller M, Gilch G, Scherer G, Scherer M. Simple, fast and sensitive LC-MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J Chromatogr B Anal Technol Biomed Life Sci. 2014;951–952:7–15. doi:10.1016/j.jchromb.2014.01.025.

    Article  Google Scholar 

  20. Iwai M, Ogawa T, Hattori H, Zaitsu K, Ishii A, Suzuki O, et al. Simple and rapid assay method for simultaneous quantification of urinary nicotine and cotinine using micro-extraction by packed sorbent and gas chromatography-mass spectrometry. Nagoya J Med Sci. 2013;75:255–61.

    CAS  Google Scholar 

  21. Tretzel L, Thomas A, Piper T, Hedeland M, Geyer H, Schänzer W, et al. Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR-MS/MS approach for sports drug testing. J Pharm Biomed Anal. 2016;123:132–40. doi:10.1016/j.jpba.2016.02.009.

    Article  CAS  Google Scholar 

  22. Sinclair S. Male infertility: nutritional and environmental considerations. Altern Med Rev. 2000;5:28–38.

    CAS  Google Scholar 

  23. EMA. Guideline on bioanalytical method validation. EMA Guidel. 2012.

  24. U.S. Department of Health and Human Services. Guidance for Industry: Bioanalytical Method Validation. 2001. doi: http://www.labcompliance.de/documents/FDA/FDA-Others/Laboratory/f-507-bioanalytical-4252fnl.pdf

  25. Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49:1041–4. doi:10.1373/49.7.1041.

    Article  CAS  Google Scholar 

  26. Smyth TJ, Ramachandran VN, McGuigan A, Hopps J, Smyth WF. Characterisation of nicotine and related compounds using electrospray ionisation with ion trap mass spectrometry and with quadrupole time-of-flight mass spectrometry and their detection by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:557–66. doi:10.1002/rcm.2871.

    Article  CAS  Google Scholar 

  27. Peiris DM, Lam W, Michael S, Ramanathan R. Distinguishing N-oxide and hydroxyl compounds: Impact of heated capillary/heated ion transfer tube in inducing atmospheric pressure ionization source decompositions. J Mass Spectrom. 2004;39:600–6. doi:10.1002/jms.623.

    Article  CAS  Google Scholar 

  28. Pacifici R, Altieri I, Gandini L, Lenzi A, Pichini S, Rosa M, et al. Nicotine, cotinine, and trans-3-hydroxycotinine levels in seminal plasma of smokers: effects on sperm parameters. Ther Drug Monit. 1993;15:358–63.

    Article  CAS  Google Scholar 

  29. Prasad GL, Jones BA, Chen P, Gregg EO. A cross-sectional study of biomarkers of exposure and effect in smokers and moist snuff consumers. Clin Chem Lab Med. 2016;54:633–42. doi:10.1515/cclm-2015-0594.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Schmitz.

Ethics declarations

Informed consent

The informed consent was signed and obtained from each participant volunteer.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 19.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-awwad, A., Arafat, T. & Schmitz, O.J. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS. Anal Bioanal Chem 408, 6473–6481 (2016). https://doi.org/10.1007/s00216-016-9766-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9766-7

Keywords

Navigation