Skip to main content
Log in

Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 μm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for cellular transporters such as MATE2-k.

Workflow employed for printing metal-spiked inks in tissue slices and subsequent image standarization using the printed isotope as internal standard

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–24. doi:10.1097/MAJ.0b013e31812dfe1e.

    Article  Google Scholar 

  2. Moreno-Gordaliza E, Giesen C, Lázaro A, Esteban-Fernández D, Humanes B, Cañas B, et al. Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies. Anal Chem. 2011;83:7933–40. doi:10.1021/ac201933x.

    Article  CAS  Google Scholar 

  3. Yonezawa A, Inui KI. Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol. 2011;81:563–8. doi:10.1016/j.bcp.2010.11.016.

    Article  CAS  Google Scholar 

  4. Husain K, Jagannathan R, Hasan Z, Trammell GL, Rybak LP, Hazelrigg SR, et al. Dose response of carboplatin-induced nephrotoxicity in rats. Pharmacol Toxicol. 2002;91:83–9.

    Article  CAS  Google Scholar 

  5. Esteban-Fernández D, Gómez-Gómez MM, Cañas B, Verdaguer JM, Ramírez R, Palacios MA. Speciation analysis of platinum antitumoral drugs in impacted tissues. Talanta. 2007;72:768–73. doi:10.1016/j.talanta.2006.12.012.

    Article  Google Scholar 

  6. Esteban-Fernández D, Verdaguer JM, Ramírez-Camacho R, Palacios MA, Gómez-Gómez MM. Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J Anal Toxicol. 2008;32:140–6.

    Article  Google Scholar 

  7. Becker JS. J Mass Spectrom. 2013;48:255–68.

    Article  Google Scholar 

  8. Becker JS, Matusch A, Wu B. Bioimaging mass spectrometry of trace elements—recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta. 2014;835:1–18. doi:10.1016/j.aca.2014.04.048.

    Article  CAS  Google Scholar 

  9. Lobinski R, Moulin C, Ortega R. Biochimie. 2006;88:1591–604.

    Article  CAS  Google Scholar 

  10. Heeren RMA, McDonnell LA, Amstalden E, Luxembourg SL, Altelaar AFM, Piersma SR. Appl Surf Sci. 2006;252:6827–35.

    Article  CAS  Google Scholar 

  11. Gholap DS, Izmer A, De Samber B, Van Elteren JT, Selih VS, Evens R, et al. Anal Chim Acta. 2010;664:19–26.

    Article  CAS  Google Scholar 

  12. Zoriy M, Matusch A, Spruss T, Becker JS. Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin. Int J Mass Spectrom. 2007;260:102–6. doi:10.1016/j.ijms.2006.09.012.

    Article  CAS  Google Scholar 

  13. Reifschneider O, Wehe CA, Diebold K, Becker C, Sperling M, Karst U. Elemental bioimaging of haematoxylin and eosin-stained tissues by laser ablation ICP-MS. J Anal At Spectrom. 2013;28:989–93.

    Article  CAS  Google Scholar 

  14. Reifschneider O, Wehe CA, Raj I, Ehmcke J, Ciarimboli G, Sperling M, et al. Quantitative bioimaging of platinum in polymer embedded mouse organs using laser ablation ICP-MS. Metallomics. 2013;5:1440–7. doi:10.1039/c3mt00147d.

    Article  CAS  Google Scholar 

  15. Bonta M, Lohninger H, Laszlo V, Hegedus B, Limbeck A. Quantitative LA-ICP-MS imaging of platinum in chemotherapy treated human malignant pleural mesothelioma samples using printed patterns as standard. J Anal At Spectrom. 2014;29:2159–67.

    Article  CAS  Google Scholar 

  16. Egger AE, Theiner S, Kornauth C, Heffeter P, Berger W, et al. Quantitative bioimaging by LA–ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics. 2014;6. doi:10.1039/C4MT00072B.

  17. Gholap D, Verhulst J, Ceelen W, Vanhaecke F. Use of pneumatic nebulization and laser ablation-inductively coupled plasma-mass spectrometry to study the distribution and bioavailability of an intraperitoneally administered Pt-containing chemotherapeutic drug. Anal Bioanal Chem. 2012;402:2121–9. doi:10.1007/s00216-011-5654-3.

    Article  CAS  Google Scholar 

  18. Frick DA, Günther D. Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard. J Anal At Spectrom. 2012;27:1294. doi:10.1039/c2ja30072a.

    Article  CAS  Google Scholar 

  19. Becker JS, Becker JS. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues. Methods Mol Biol. 2010;656:51–82.

    Article  CAS  Google Scholar 

  20. Austin C, Fryer F, Lear J, Bishop D, Hare D, Rawling T, et al. Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS. J Anal At Spectrom. 2011;26:1494. doi:10.1039/c0ja00267d.

    Article  CAS  Google Scholar 

  21. Austin C, Hare D, Rawling T, McDonagh AM, Doble PJ. J Anal At Spectrom. 2010;25:722–5.

    Article  CAS  Google Scholar 

  22. Konz I, Fernández B, Fernández ML, Pereiro R, González H, Álvarez L, et al. Gold internal standard correction for elemental imaging of soft tissue sections by LA-ICP-MS: element distribution in eye microstructures. Anal Bioanal Chem. 2013;405:3091–6. doi:10.1007/s00216-013-6778-4.

    Article  CAS  Google Scholar 

  23. Bellis DJ, Santamaria-Fernandez R. Ink jet patterns as model samples for the development of LA-ICP-SFMS methodology for mapping of elemental distribution with reference to biological samples. J Anal At Spectrom. 2010;25:957. doi:10.1039/b926430b.

    Article  CAS  Google Scholar 

  24. Hoesl S, Neumann B, Techritz S, Linscheid MW, Theuring F, Scheler C, et al. Development of a calibration and standardization procedure for LA-ICP-MS using a conventional ink-jet printer for quantification of proteins in electro- and Western-blot assays. J Anal At Spectrom. 2014;450:1282–91. doi:10.1039/c4ja00060a.

    Article  Google Scholar 

  25. Muldoon LL, Pagel MA, Kroll RA, Brummett RE, Doolittle ND, Zuhowski EG, et al. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin Cancer Res. 2000;6:309–15.

    CAS  Google Scholar 

  26. Böhm S, Oriana S, Spatti G, Di Re F, Breasciani G, Pirovano C, et al. Dose intensification of platinum compounds with glutathione protection as induction chemotherapy for advanced ovarian carcinoma. Oncology. 1999;57:115–20.

    Article  Google Scholar 

  27. Wandt H, Birkmann J, Denzel T, Schafer K, Schwab G, Pilz D, et al. Sequential cycles of high-dose chemotherapy with dose escalation of carboplatin with or without paclitaxel supported by G-CSF mobilized peripheral blood progenitor cells: a phase I/II study in advanced ovarian cancer. Bone Marrow Transplant. 1999;23:763–70. doi:10.1038/sj.bmt.1701659.

    Article  CAS  Google Scholar 

  28. Humanes B, Lazaro A, Camano S, Moreno-Gordaliza E, Lazaro JA, Blanco-Codesido M, et al. Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney Int. 2012;82:652–63. doi:10.1038/ki.2012.199.

    Article  CAS  Google Scholar 

  29. Todd RC, Lippard SJ. Inhibition of transcription by platinum antitumor compounds. Metallomics. 2009;1:280–91. doi:10.1039/b907567d.

    Article  CAS  Google Scholar 

  30. Husain K, Whitworth C, Rybak LP. Time response of carboplatin-induced nephrotoxicity in rats. Pharmacol Res. 2004;50:291–300. doi:10.1016/j.phrs.2004.04.001.

    Article  CAS  Google Scholar 

  31. Terada T, Inui KI. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75:1689–96. doi:10.1016/j.bcp.2007.12.008.

    Article  CAS  Google Scholar 

  32. Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K-I. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006;319:879–86. doi:10.1124/jpet.106.110346.lato.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Economy and Competitiveness of Spain (CTQ-2011-24585 and CTQ2014-55711-R). The authors want to thank Dr. Heike Traub for her valuable expertise in laser ablation measurements. I. Moraleja also acknowledges Universidad Complutense of Madrid for a predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Esteban-Fernández.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Irene Moraleja and Diego Esteban-Fernández contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraleja, I., Esteban-Fernández, D., Lázaro, A. et al. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin. Anal Bioanal Chem 408, 2309–2318 (2016). https://doi.org/10.1007/s00216-016-9327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9327-0

Keywords

Navigation