Skip to main content
Log in

Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL–1, which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL–1 of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akinalp AS, Asan M, Ozcan N. Expression of T4 lysozyme gene (gene e) in Streptococcus salivarius subsp. Thermophilus. Afr J Biotechnol. 2007;6:963–6.

    CAS  Google Scholar 

  2. Li S, Mulloor JJ, Wang L, Ji Y, Mulloor CJ, Micic M, et al. Strong and selective adsorption of lysozyme on graphene oxide. ACS Appl Mater Interfaces. 2014;6:5704–12.

    Article  CAS  Google Scholar 

  3. Ou SH, Wu MC, Chou TC, Liu CC. Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal Chim Acta. 2004;504:163–6.

    Article  CAS  Google Scholar 

  4. Pascual R, Gee B, Finch S. Usefulness of serum lysozyme analysis in diagnosis and evaluation of sarcoidosis. N Engl J Med. 1973;289:1074–6.

    Article  CAS  Google Scholar 

  5. Perillie PE, Kaplan SS, Lefkowitz E, Rogaway W, Finch SC. Studies of muramidase (lysozyme) in leukemia. J Am Med Assoc. 1968;203:317–22.

    Article  Google Scholar 

  6. Osserman EF, Lawlor DP. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J Exp Med. 1966;124:921–52.

    Article  CAS  Google Scholar 

  7. Prockop DJ, Davidson WD. A study of urinary and serum lysozyme in patients with renal disease. N Engl J Med. 1964;270:269–74.

    Article  CAS  Google Scholar 

  8. Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond Ser B. 1922;93:306–17.

    Article  CAS  Google Scholar 

  9. Newman J, Cacatian A, Josephson A, Tsang A. Spinal-fluid lysozyme in the diagnosis of central-nervous-system tumours. Lancet. 1974;304:756–7.

    Article  Google Scholar 

  10. Ding Z, Annie Bligh SW, Tao L, Quan J, Nie H, Zhu L, et al. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein. Mater Sci Eng C. 2015;48:469–79.

    Article  CAS  Google Scholar 

  11. Rachkov A, McNiven S, El’skaya A, Yano K, Karube I. Fluorescence detection of β-estradiol using a molecularly imprinted polymer. Anal Chim Acta. 2000;405:23–9.

    Article  CAS  Google Scholar 

  12. Zourob M. Recognition receptors in biosensors. New York: Springer Science Business Media; 2010.

    Book  Google Scholar 

  13. Garcia R, Cabrita MJ, Costa Freitas AM. Application of molecularly imprinted polymers for the analysis of pesticide residues in food-A highly selective and innovative approach. Am J Anal Chem. 2011;2:16–25.

    Article  Google Scholar 

  14. Fu G, He H, Chai Z, Chen H, Kong J, Wang Y, et al. Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption. Anal Chem. 2011;83:1431–6.

    Article  CAS  Google Scholar 

  15. He H, Fu G, Wang Y, Chai Z, Jiang Y, Chen Z. Imprinting of protein over silica nanoparticles via surface graft copolymerization using low monomer concentration. Biosens Bioelectron. 2010;26:760–5.

    Article  CAS  Google Scholar 

  16. Qian L, Hu X, Guan P, Wang D, Li J, Du C, et al. The effectively specific recognition of bovine serum albumin imprinted silica nanoparticles by utilizing a macromolecularly functional monomer to stabilize and imprint template. Anal Chim Acta. 2015;884:97–105.

    Article  CAS  Google Scholar 

  17. Chen H, Yuan D, Li Y, Dong M, Chai Z, Kong J, et al. Silica nanoparticle supported molecularly imprinted polymer layers with varied degrees of crosslinking for lysozyme recognition. Anal Chim Acta. 2013;779:82–9.

    Article  CAS  Google Scholar 

  18. Liu D, Yang Q, Jin S, Song Y, Gao J, Wang Y, et al. Core–shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein. Acta Biomater. 2014;10:769–75.

    Article  CAS  Google Scholar 

  19. Gai Q-Q, Qu F, Liu Z-J, Dai R-J, Zhang Y-K. Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation. J Chromatogr A. 2010;1217:5035–42.

    Article  CAS  Google Scholar 

  20. Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst. 2013;138:651–8.

    Article  CAS  Google Scholar 

  21. Lee M-H, Thomas JL, Ho M-H, Yuan C, Lin H-Y. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Appl Mater Interfaces. 2010;2:1729–36.

    Article  CAS  Google Scholar 

  22. Li L, He X, Chen L, Zhang Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J. 2009;4:286–93.

    Article  CAS  Google Scholar 

  23. Li Y, Yang H-H, You Q-H, Zhuang Z-X, Wang X-R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem. 2006;78:317–20.

    Article  CAS  Google Scholar 

  24. Wang J, Gao L, Han D, Pan J, Qiu H, Li H, et al. Optical detection of λ-cyhalothrin by core-shell fluorescent molecularly imprinted polymers in chinese spirits. J Agric Food Chem. 2015;63:2392–9.

    Article  CAS  Google Scholar 

  25. Sunayama H, Ooya T, Takeuchi T. Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment. Biosens Bioelectron. 2010;26:458–62.

    Article  CAS  Google Scholar 

  26. Zhao Y, Ma Y, Li H, Wang L. Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem. 2012;84:386–95.

    Article  CAS  Google Scholar 

  27. Wu X, Zhang Z, Li J, You H, Li Y, Chen L. Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sensors Actuators B: Chem. 2015;211:507–14.

    Article  CAS  Google Scholar 

  28. Campbell PA, Canono BP, Drevets DA (2001) Measurement of bacterial ingestion and killing by macrophages. Current protocols in immunology. Hoboken NJ: John Wiley and Sons, Inc.; 2001.

  29. Grunberg E, Cleeland R. Fluorescence and viability of proteus mirabilis stained directly with fluorescein isothiocyanate. J Bacteriol. 1966;92:23–7.

    CAS  Google Scholar 

  30. Miller JS, Quarles JM. Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry. 1990;11:667–75.

    Article  CAS  Google Scholar 

  31. Kelly KA, Reynolds F, Weissleder R, Josephson L. Fluorescein isothiocyanate-hapten immunoassay for determination of peptide-cell interactions. Anal Biochem. 2004;330:181–5.

    Article  CAS  Google Scholar 

  32. McClatchey KD. Clinical laboratory medicine. Philadelphia, PA: Lippincott Wiliams and Wilkins; 2002.

  33. Huang J, Liu H, Men H, Zhai Y, Xi Q, Zhang Z, et al. Molecularly imprinted polymer coating with fluorescence on magnetic particle. Macromol Res. 2013;21:1021–8.

    Article  CAS  Google Scholar 

  34. Chen L, Li J, Wang S, Lu W, Wu A, Choo J, et al. FITC functionalized magnetic core-shell Fe3O4/Ag hybrid nanoparticle for selective determination of molecular biothiols. Sensors Actuators B Chem. 2014;193:857–63.

    Article  CAS  Google Scholar 

  35. Feng H, Wang N, Tran TT, Yuan L, Li J, Cai Q. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate. Sensors Actuators B Chem. 2014;195:266–73.

    Article  CAS  Google Scholar 

  36. Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem B. 2015;119:13227–35.

    Article  CAS  Google Scholar 

  37. Stobiecka M. Novel plasmonic field-enhanced nanoassay for trace detection of proteins. Biosens Bioelectron. 2014;55:379–85.

    Article  CAS  Google Scholar 

  38. Lim GW, Lim JK, Ahmad AL, Chan DJC. Molecularly imprinted polymer layers using Navicula sp. frustule as core material for selectively recognition of lysozyme. Chem Eng Res Des. 2015;101:2–14.

    Article  CAS  Google Scholar 

  39. Fowler CE, Buchber C, Lebeau B, Patarin J, Delacôte C, Walcarius A. An aqueous route to organically functionalized silica diatom skeletons. Appl Surf Sci. 2007;253:5485–93.

    Article  CAS  Google Scholar 

  40. Hildebrand M. Biological processing of nanostructured silica in diatoms. Prog Org Coat. 2003;47:256–66.

    Article  CAS  Google Scholar 

  41. Yu Y, Addai-Mensah J, Losic D. Functionalized diatom silica microparticles for removal of mercury ions. Sci Technol Adv Mater. 2012;13:1–11.

    Article  Google Scholar 

  42. Lemonas JF. Diatomite. Am Ceram Soc Bull. 1997;76:92–5.

    Google Scholar 

  43. Lim GW, Lim JK, Ahmad AL, Chan DJC. Influences of diatom frustule morphologies on protein adsorption behavior. J Appl Phycol. 2015;27:763–75.

    Article  CAS  Google Scholar 

  44. Baumgärtel T, von Borczyskowski C, Graaf H. Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes. Beilstein J Nanotechnol. 2013;4:218–26.

    Article  Google Scholar 

  45. Bergmann NM (2005) Molecularly imprinted polyacrylamide polymers and copolymers with specific recognition for serum proteins. Ph.D. Dissertation, The University of Texas.

  46. Pang S, Liu S, Su X. A novel fluorescence assay for the detection of hemoglobin based on the G-quadruplex/hemin complex. Talanta. 2014;118:118–22.

    Article  CAS  Google Scholar 

  47. Tan L, Kang C, Xu S, Tang Y. Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens Bioelectron. 2013;48:216–23.

    Article  CAS  Google Scholar 

  48. Zhang C, Cui H, Cai J, Duan Y, Liu Y. Development of fluorescence sensing material based on CdSe/ZnS quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and chinese cabbage. J Agric Food Chem. 2015;63:4966–72.

    Article  CAS  Google Scholar 

  49. Loucaides S, Behrends T, Van Cappellen P. Reactivity of biogenic silica: surface versus bulk charge density. Geochim Cosmochim Acta. 2010;74:517–30.

    Article  CAS  Google Scholar 

  50. Tozak KÖ, Erzengin M, Sargın İ, Ünlü N. Sorption of DNA by diatomite-Zn (II) embedded supermacroporous monolithic p(HEMA) cryogels. EXCLI J. 2013;12:670–80.

    Google Scholar 

  51. Bergmann NM, Peppas NA. Configurational biomimetic imprinting for protein recognition: structural characteristics of recognitive hydrogels. Ind Eng Chem Res. 2008;47:9099–107.

    Article  CAS  Google Scholar 

  52. Siyam T, Abd-Elatif ZH. Gamma radiation-induced preparation of poly(acrylamide-acrylic acid-dimethylaminoethylmethacrylate) as exchanger. J Macromol Sci. 1999;36:417–28.

    Article  Google Scholar 

  53. Ghosh SK, Ali M, Chatterjee H. Studies on the interaction of fluorescein isothiocyanate and its sugar analogues with cetyltrimethylammonium bromide. Chem Phys Lett. 2013;561(562):147–52.

    Article  Google Scholar 

  54. Jiang L, Li X, Liu L, Zhang Q. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles. Int Jf Nanomed. 2013;8:1825–34.

    Google Scholar 

  55. Ma LY, Wang HY, Xie H, Xu LX. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor. Spectrochim Acta A. 2004;60:1865–72.

    Article  Google Scholar 

  56. Sjöback R, Nygren J, Kubista M. Absorption and fluorescence properties of fluorescein. Spectrochim Acta A. 1995;51:L7–21.

    Article  Google Scholar 

  57. Harz S, Schimmelpfennig M, Tse Sum Bui B, Marchyk N, Haupt K, Feller K-H. Fluorescence optical spectrally resolved sensor based on molecularly imprinted polymers and microfluidics. Eng Life Sci. 2011;11:559–65.

    Article  CAS  Google Scholar 

  58. Deng Q, Wu J, Zhai X, Fang G, Wang S. Highly selective fluorescent sensing of proteins based on a fluorescent molecularly imprinted nanosensor. Sensors. 2013;13:12994.

    Article  CAS  Google Scholar 

  59. Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials. 2011;32:3008–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Postgraduate Research Grant Scheme (grant no. 8046003), FRGS grant (6071271), and Research University Grant (814209). G.W.L. is financially assisted by MyPhD scholarship from the Ministry of Higher Education of Malaysia. All authors are affiliated with Membrane Science and Technology cluster USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Juinn Chieh Chan.

Ethics declarations

Conflict of interest

The authors declare that there have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, G.W., Lim, J.K., Ahmad, A.L. et al. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme. Anal Bioanal Chem 408, 2083–2093 (2016). https://doi.org/10.1007/s00216-015-9298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9298-6

Keywords

Navigation