Skip to main content
Log in

Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333–665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7–9.5 % were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5–10 min or less and required only 1–5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research.

General scheme for the analysis of free drug fractions in serum by ultrafast affinity chromatography and two-dimensional affinity chromatography. The circles represent the drug and the half-circles on the left are serum proteins that can undergo reversible binding with this drug. The rectangles represent (from left-to-right) a guard column, an affinity microcolumn, and an analytical affinity column that are used to isolate and measure the drug's free fraction in serum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic, San Diego, CA

    Google Scholar 

  2. Burtis CA, Ashwood ER, Bruns DE (2006) Tietz textbook of clinical chemistry and molecular diagnostics. Saunders, St Louis, MO

    Google Scholar 

  3. Zheng X, Li Z, Podariu MI, Hage DS (2014) Anal Chem 86:6454–6460

    Article  CAS  Google Scholar 

  4. Hage DS, Jackson A, Sobansky MR, Schiel JE, Yoo MJ, Joseph KS (2009) J Sep Sci 32:835–853

    Article  CAS  Google Scholar 

  5. Kwong TC (1985) Clin Chim Acta 151:193–216

    Article  CAS  Google Scholar 

  6. Herve F, Urien S, Albengres E, Duche JC, Tillement JP (1994) Clin Pharmacokinet 26:44–58

    Article  CAS  Google Scholar 

  7. Clarke W, Schiel JE, Moser A, Hage DS (2005) Anal Chem 77:1859–1866

    Article  CAS  Google Scholar 

  8. Clarke W, Chowdhuri AR, Hage DS (2001) Anal Chem 73:2157–2164

    Article  CAS  Google Scholar 

  9. Krebs HA (1950) Annu Rev Biochem 19:409–430

    Article  CAS  Google Scholar 

  10. Zheng X, Yoo MJ, Hage DS (2013) Analyst 138:6262–6265

    Article  CAS  Google Scholar 

  11. Zheng X, Matsuda R, Hage DS (2014) J Chromatogr A 1371:82–89

    Article  CAS  Google Scholar 

  12. Melten JW, Wittebrood AJ, Hubb JJ, Faber GH, Wemer J, Faber DB (1985) J Pharm Sci 74:692–694

    Article  CAS  Google Scholar 

  13. Musteata FM (2011) Bioanalysis 3:1753–1768

    Article  CAS  Google Scholar 

  14. Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriquez E, Badilla JV, Zheng X, Hage B, Hage DS (2014) J Chromatogr B 966:48–58

    Article  CAS  Google Scholar 

  15. Vuignier K, Schappler J, Veuthey J, Carrupt P, Martel S (2010) Anal Bioanal Chem 398:53–66

    Article  CAS  Google Scholar 

  16. Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, White CJ II, Carter N, Hage DS (2014) J Chromatogr B 968:49–63

    Article  CAS  Google Scholar 

  17. Rich LR, Day YS, Morton TA, Myszka DG (2001) Anal Biochem 296:197–207

    Article  CAS  Google Scholar 

  18. Dings F, Zhao G, Chen S, Liu F, Sun Y, Zhang L (2009) J Mol Struct 929:159–166

    Article  CAS  Google Scholar 

  19. Leis D, Barbosa S, Attwood D, Taboada P, Mosquera V (2002) Langmuir 18:8178–8185

    Article  CAS  Google Scholar 

  20. Yuan H, Pawliszyn J (2001) Anal Chem 73:4410–4416

    Article  CAS  Google Scholar 

  21. Schiel JE, Hage DS (2009) J Sep Sci 32:1507–1522

    Article  CAS  Google Scholar 

  22. Yoo MJ, Hage DS (2011) J Chromatogr A 1218:2072–2078

    Article  CAS  Google Scholar 

  23. Schiel JE, Hage DS (2009) J Sep Sci 32:1507–1522

    Article  CAS  Google Scholar 

  24. Mallik R, Yoo MJ, Briscoe CJ, Hage DS (2010) J Chromatogr A 1217:2796–2803

    Article  CAS  Google Scholar 

  25. Ahene AB (2011) Bioanalysis 3:1287–1295

    Article  CAS  Google Scholar 

  26. Holm SS, Hansen SH, Faber J, Staun-Olsen P (2004) Clin Biochem 37:85–93

    Article  CAS  Google Scholar 

  27. Soldin OP, Soldin SJ (2011) Clin Biochem 44:89–94

    Article  CAS  Google Scholar 

  28. Weber PC, Salemme FR (2003) Curr Opin Struct Biol 13:115–121

    Article  CAS  Google Scholar 

  29. Zheng X, Bi C, Li Z, Podariu M, Hage DS (2015) J Pharm Biomed Anal. doi:10.1016/j.jpba.2015.01.042

    Google Scholar 

  30. Schiel JE, Tong Z, Sakulthaew C, Hage DS (2011) Anal Chem 83:9384–9390

    Article  CAS  Google Scholar 

  31. Ohnmacht CM, Schiel JE, Hage DS (2006) Anal Chem 78:7547–7556

    Article  CAS  Google Scholar 

  32. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS (2013) Anal Chem 85:4453–4460

    Article  CAS  Google Scholar 

  33. Lee JW, Kim HJ, Kwon YS, Jun YH, Kim SK, Choi JW, Lee JE (2003) Ann Pediatr Endocrinol Metab 18:208–213

    Article  Google Scholar 

  34. Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE (2002) Diabetes Care 25:275–278

    Article  CAS  Google Scholar 

  35. Chen J, Hage DS (2006) Anal Chem 78:2672–2683

    Article  CAS  Google Scholar 

  36. Joseph KS, Hage DS (2010) J Chromatogr B 878:1590–1598

    Article  CAS  Google Scholar 

  37. Joseph KS, Anguizola J, Jackson AJ, Hage DS (2010) J Chromatogr B 878:2775–2781

    Article  CAS  Google Scholar 

  38. Joseph KS, Anguizola J, Hage DS (2011) J Pharm Biomed Anal 54:426–432

    Article  CAS  Google Scholar 

  39. Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) Anal Bioanal Chem 401:2811–2819

    Article  CAS  Google Scholar 

  40. Schiel JE (2009) Clinical and pharmaceutical applications of high-performance affinity chromatography. Ph.D. dissertation, University of Nebraska, Lincoln, NE

  41. Regenthal R, Krueger M, Koeppel C, Preiss R (1999) J Clin Monit 15:529–544

    Article  CAS  Google Scholar 

  42. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64:1355–1374

    Article  CAS  Google Scholar 

  43. Wilting J, Hart BJT, De Gier JJ (1980) Biochim Biophys Acta 626:291–298

    Article  CAS  Google Scholar 

  44. Ueda CT, Makoid MC (1979) J Pharm Sci 68:448–450

    Article  CAS  Google Scholar 

  45. Yoo MJ, Hage DS (2011) J Sep Sci 34:2255–2263

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under grants R01 GM044931 and R01 DK069629. M. Podariu was supported through a UCARE fellowship from the University of Nebraska-Lincoln. The concept of free fraction analysis by rapid affinity chromatography is the subject of U.S. Patent 6,720,193 (D.S. Hage and W.A. Clarke).

Conflict of interest

The authors declare that they have competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Podariu, M., Matsuda, R. et al. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography. Anal Bioanal Chem 408, 131–140 (2016). https://doi.org/10.1007/s00216-015-9082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9082-7

Keywords

Navigation