Skip to main content

Analysis of Drug–Protein Interactions by High-Performance Affinity Chromatography: Interactions of Sulfonylurea Drugs with Normal and Glycated Human Serum Albumin

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug–protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug–protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  2. Zheng X, Li Z, Beeram S, Padariu M, Matsuda R, Pfaunmiller EL, White CJ II, Carter N, Hage DS (2014) Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B Analyt Technol Biomed Life Sci 968:49–63. doi:10.1016/j.jchromb.2014.01.026

    Article  CAS  PubMed  Google Scholar 

  3. Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M (2003) The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta 1623:88–97

    Article  CAS  PubMed  Google Scholar 

  4. Barzegar A, Moosavi-Movahedi AA, Sattarahmady N, Hosseinpour-Faizi MA, Aminbakhsh M, Ahmad F, Saboury AA, Ganjali MR, Norouzi P (2007) Spectroscopic studies of the effects of glycation of human serum albumin on L-trp binding. Protein Pept Lett 14:13–18

    Article  CAS  PubMed  Google Scholar 

  5. Okabe N, Hashizume N (1994) Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biol Pharm Bull 17:16–21

    Article  CAS  PubMed  Google Scholar 

  6. Baraka-Vidot J, Guerin-Dubourg A, Bourdon E, Rondeau P (2012) Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie 94:1960–1967

    Article  CAS  PubMed  Google Scholar 

  7. Syrovy I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehydes measured using four methods. J Biochem Biophys Methods 28:115–121

    Article  CAS  PubMed  Google Scholar 

  8. Koizumi K, Ikeda C, Ito M, Suzuki J, Kinoshita T, Yasukawa K, Hanai T (1998) Influence of glycosylation on the drug binding of human serum albumin. Biomed Chromatogr 12:203–210

    Article  CAS  PubMed  Google Scholar 

  9. Fitzpatrick G, Duggan PF (1987) The effect of non-enzymatic glycation on ligand binding to human serum albumin. Biochem Soc Trans 15:267–268

    CAS  Google Scholar 

  10. McNamara PJ, Blouin RA, Brazzell RK (1988) The protein binding of phenytoin, propranolol, diazepam and AL01576 (an aldose reductase inhibitor) in human and rat diabetic serum. Pharm Res 5:261–265

    Article  CAS  PubMed  Google Scholar 

  11. Doucet J, Fresel J, Hue G, Moore N (1993) Protein binding of digitoxin, valproate and phenytoin in sera from diabetics. Eur J Clin Pharmacol 45:577–579

    Article  CAS  PubMed  Google Scholar 

  12. Bohney JP, Feldhoff RC (1992) Effects of nonenzymatic glycosylation and fatty acids on tryptophan binding to human serum albumin. Biochem Pharmacol 43:1829–1834

    Article  CAS  PubMed  Google Scholar 

  13. Joseph KS, Hage DS (2010) The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J Pharm Biomed Anal 53:811–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Joseph KS, Anguizola J, Jackson AJ, Hage DS (2010) Chromatographic analysis of acetohexamide binding to glycated human serum albumin. J Chromatogr B 878:2775–2781

    Article  CAS  Google Scholar 

  15. Joseph KS, Anguizola J, Hage DS (2011) Binding of tolbutamide to glycated human serum albumin. J Pharm Biomed Anal 54:426–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin. Anal Bioanal Chem 401:2811–2819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem 405:5833–5841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Joseph KS, Hage DS (2010) Characterization of the binding of sulfonylurea drugs to HSA by high-performance affinity chromatography. J Chromatogr B 878:1590–1598

    Article  CAS  Google Scholar 

  19. Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J Chromatogr A 1265:114–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS (2013) Development of affinity microcolumns for drug–protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal Chem 85:4453–4460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug–protein interactions. J Chromatogr B 699:499–525

    Article  CAS  Google Scholar 

  22. Heegaard NHH, Schou C (2006) Affinity ligands in capillary electrophoresis. In: Hage DS (ed) Handbook of affinity chromatography. CRC, Boca Raton, Chapter 26

    Google Scholar 

  23. Hoffmann T, Martin MM (2010) CE-ESI-MS/MS as a rapid screening tool for the comparison of protein-ligand interactions. Electrophoresis 31:1248–1255

    Article  CAS  PubMed  Google Scholar 

  24. Hage DS (2001) Chromatographic and electrophoretic studies of protein binding to chiral solutes. J Chromatogr B 906:459–481

    Article  CAS  Google Scholar 

  25. Hage DS, Anguizola JA, Jackson AJ, Matsuda R, Papastavros E, Pfaunmiller E, Tong Z, Vargas-Badilla J, Yoo MJ, Zheng X (2011) Chromatographic analysis of drug interactions in the serum proteome. Anal Methods 3:1449–1460

    Article  CAS  Google Scholar 

  26. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615

    CAS  PubMed  Google Scholar 

  27. Hage DS (2012) Affinity chromatography. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, New York

    Google Scholar 

  28. Turkova J (1978) Affinity chromatography. Elsevier, Amsterdam

    Google Scholar 

  29. Scouten WH (1985) Affinity chromatography: bioselective adsorption on inert matrices. Wiley, New York

    Google Scholar 

  30. Schott H (1985) Affinity chromatography: template chromatography of nucleic acids and proteins. Dekker, New York

    Google Scholar 

  31. Parikh I, Cuatrecasas P (1985) Affinity chromatography. Chem Eng News 63:17–29

    Article  CAS  Google Scholar 

  32. Walters RR (1985) Affinity chromatography. Anal Chem 57:AA1099–AA1114

    Google Scholar 

  33. Mohr P, Pommerening K (1985) Affinity chromatography: practical and theoretical aspects. Dekker, New York

    Google Scholar 

  34. Jones K (1991) Affinity chromatography—an overview. Anal Proceed 28:143–144

    Google Scholar 

  35. Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, San Diego

    Google Scholar 

  36. Ngo TT (ed) (1993) Molecular interactions in bioseparations. Plenum, New York

    Google Scholar 

  37. Hage DS (1998) In: Katz E, Eksteen R, Miller N (eds) Handbook of HPLC. Marcel Dekker, New York, Chapter 13

    Google Scholar 

  38. Chaiken IM (ed) (1987) Analytical affinity chromatography. CRC, Boca Raton

    Google Scholar 

  39. Schiel JE, Hage DS (2009) Kinetic studies of biological interactions by affinity chromatography. J Sep Sci 32:1507–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS (2014) Studies of metabolite-protein interactions: a review. J Chromatogr B 966:48–58

    Article  CAS  Google Scholar 

  41. Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 6th edn. W.H. Freeman Publishers, New York

    Google Scholar 

  42. Colmenarejo G (2003) In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23:275–301

    Article  CAS  PubMed  Google Scholar 

  43. Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch Biochem Biophys 444:92–99

    Article  CAS  PubMed  Google Scholar 

  44. Iberg N, Fluckiger R (1986) Nonenzymatic glycosylation of albumin in vivo: identification of multiple glycosylated sites. J Biol Chem 261:13542–13545

    CAS  PubMed  Google Scholar 

  45. Matsuda R, Kye S, Anguizola J, Hage DS (2014) Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography. Rev Anal Chem. in press. doi: 10.1515/revac-2013-0029

  46. Lapolla A, Fedele D, Reitano R, Bonfante L, Guizzo M, Seraglia R, Tubaro M, Traldi P (2005) Mass spectrometric study of in vivo production of advanced glycation end-products/peptides. J Mass Spectrom 40:969–972

    Article  CAS  PubMed  Google Scholar 

  47. Lapolla A, Fedele D, Seraglia R, Traldi P (2006) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom Rev 25:775–797

    Article  CAS  PubMed  Google Scholar 

  48. Anguizola J, Matsuda R, Barnaby OS, Joseph KS, Wa C, Debolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76

    Article  CAS  PubMed  Google Scholar 

  49. Barnaby OS, Wa C, Cerny RL, Clarke W, Hage DS (2010) Quantitative analysis of glycation sites on human serum labeling using 16O/18O labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 411:1102–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 412:277–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  52. Rookh HV, Zaidi AR (2008) A review of glycated albumin as an intermediate glycation index for controlling diabetes. J Diabetes Sci Technol 2:1114–1121

    Article  Google Scholar 

  53. Skillman TG, Feldman JM (1981) The pharmacology of sulfonylureas. Am J Med 70:361–372

    Article  CAS  PubMed  Google Scholar 

  54. Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R (2004) Enzymatic digestion and mass spectrometry in the study of advance glycation end products/peptides. J Am Soc Mass Spectrom 25:496–509

    Article  Google Scholar 

  55. Ney KA, Colley KJ, Pizzo SV (1981) The standardization of the thiobarbituric acid assay for nonenzymatic glucosylation of human serum albumin. Anal Biochem 118:294–300

    Article  CAS  PubMed  Google Scholar 

  56. Mallik R, Hage DS (2006) Affinity monolith chromatography. J Sep Sci 12:1686–1704

    Article  Google Scholar 

  57. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: A review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pfaunmiller E, Moser AC, Hage DS (2012) Biointeraction analysis of immobilized antibodies and related agents by high-performance immunoaffinity chromatography. Methods 56:130–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Walters RR (1982) High-performance affinity chromatography: pore-size effects. J Chromatogr A 249:19–28

    Article  CAS  Google Scholar 

  60. Larsson PO (1984) High-performance liquid affinity chromatography. Methods Enzymol 104:212–223

    Article  CAS  PubMed  Google Scholar 

  61. Conrad ML, Moser AC, Hage DS (2009) Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: analysis by high-performance affinity chromatography. J Sep Sci 32:1145–1155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Joseph KS, Moser AC, Basiga S, Schiel JE, Hage DS (2009) Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography. J Chromatogr A 1216:3492–3500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Hage DS, Sengupta A (1999) Characterization of the binding of digitoxin and acetyldigitoxin to human serum albumin by high-performance affinity chromatography. J Chromatogr B 724:91–100

    Article  CAS  Google Scholar 

  64. Hage DS, Chen J (2006) Quantitative affinity chromatography: practical aspects. In: Hage DS (ed) Handbook of affinity chromatography. CRC, Boca Raton, Chapter 22

    Google Scholar 

  65. Tweed SA, Loun B, Hage DS (1997) Effect of ligand, heterogeneity in the characterization of affinity columns by frontal analysis. Anal Chem 69:4790–4798

    Article  CAS  PubMed  Google Scholar 

  66. Tong Z, Hage DS (2011) Detection of heterogeneous drug–protein binding by frontal analysis and high-performance affinity chromatograph and peak profiling. J Chromatogr A 1218:8915–8924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Loun B, Hage DS (1995) Characterization of thyroxine albumin-binding using high-performance affinity chromatography. 2. Comparison of the binding of thyroxine, triiodothyronines and related compounds at the warfarin and indole sites of human serum albumin. J Chromatogr B 665:303–314

    Article  CAS  Google Scholar 

  68. Wa C, Cerny RL, Hage DS (2006) Identification and quantitative studies on protein immobilization sites by stable isotope labeling and mass spectrometry. Anal Chem 78:7967–7977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Moser AC, Kingsbury C, Hage DS (2006) Stability of warfarin solutions for drug–protein binding measurements: spectroscopic and chromatographic studies. J Pharm Biomed Anal 41:1101–1109

    Article  CAS  PubMed  Google Scholar 

  70. Yalkowsky SH, Dannenfelser RM (1992) Aquasol database of aqueous solubility, Ver. 5, University of Arizona, Tucson

    Google Scholar 

  71. Ohnmacht CM, Chen S, Tong Z, Hage DS (2006) Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. J Chromatogr B 836:83–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Institutes of Health under grants R01 DK069629 and R01 GM044931. Additional support for R. Matsuda was obtained through a fellowship from the Molecular Mechanisms of Disease Program at the University of Nebraska-Lincoln.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsuda, R., Anguizola, J., Hoy, K.S., Hage, D.S. (2015). Analysis of Drug–Protein Interactions by High-Performance Affinity Chromatography: Interactions of Sulfonylurea Drugs with Normal and Glycated Human Serum Albumin. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics