Skip to main content
Log in

Orthogonal analysis of functional gold nanoparticles for biomedical applications

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report a comprehensive strategy based on implementation of orthogonal measurement techniques to provide critical and verifiable material characteristics for functionalized gold nanoparticles (AuNPs) used in biomedical applications. Samples were analyzed before and after ≈50 months of cold storage (≈4 °C). Biomedical applications require long-term storage at cold temperatures, which could have an impact on AuNP therapeutics. Thiolated polyethylene glycol (SH-PEG)-conjugated AuNPs with different terminal groups (methyl-, carboxylic-, and amine-) were chosen as a model system due to their high relevancy in biomedical applications. Electrospray-differential mobility analysis, asymmetric-flow field flow fractionation, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, inductively coupled plasma mass spectrometry, and small-angle X-ray scattering were employed to provide both complementary and orthogonal information on (1) particle size and size distribution, (2) particle concentrations, (3) molecular conjugation properties (i.e., conformation and surface packing density), and (4) colloidal stability. Results show that SH-PEGs were conjugated on the surface of AuNPs to form a brush-like polymer corona. The surface packing density of SH-PEG was ≈0.42 nm−2 for the methyl-PEG-SH AuNPs, ≈0.26 nm−2 for the amine-SH-PEG AuNPs, and ≈0.18 nm−2 for the carboxylic-PEG-SH AuNPs before cold storage, approximately 10 % of its theoretical maximum value. The conformation of surface-bound SH-PEGs was then estimated to be in an intermediate state between brush-like and random-coiled, based on the measured thicknesses in liquid and in dry states. By analyzing the change in particle size distribution and number concentration in suspension following cold storage, the long term colloidal stability of AuNPs was shown to be significantly improved via functionalization with SH-PEG, especially in the case of methyl-PEG-SH and carboxylic-PEG-SH (i.e., we estimate that >80 % of SH-PEG5K remained on the surface of AuNPs during storage). The work described here provides a generic strategy to track and analyze the material properties of functional AuNPs intended for biomedical applications, and highlights the importance of a multi-technique analysis. The effects of long term storage on the physical state of the particles, and on the stability of the ligand-AuNP conjugates, are employed to demonstrate the capacity of this approach to address critical issues relevant to clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanomedicine-UK 6:715–728

    Article  CAS  Google Scholar 

  2. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  3. Yeh YC, Creran B, Rotello VM (2012) Nanoscale 4:1871–1880

    Article  CAS  Google Scholar 

  4. Ng VWK, Berti R, Lesage F, Kakkar A (2013) J Mater Chem B 1:9–25

    Article  CAS  Google Scholar 

  5. Webb JA, Bardhan R (2014) Nanoscale 6:2502–2530

    Article  CAS  Google Scholar 

  6. Lee SM, Tsai DH, Hackley VA, Brechbiel MW, Cook RF (2013) Nanoscale 5:5252–5256

    Article  CAS  Google Scholar 

  7. Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  8. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  9. Nelson BC, Petersen EJ, Marquis BJ, Atha DH, Elliott JT, Cleveland D, Watson SS, Tseng IH, Dillon A, Theodore M, Jackman J (2013) Nanotoxicology 7:21–29

    Article  CAS  Google Scholar 

  10. Paciotti GF, Kingston DGI, Tamarkin L (2006) Drug Develop Res 67:47–54

    Article  CAS  Google Scholar 

  11. Tsai DH, Elzey S, DelRio FW, Keene AM, Tyner KM, Clogston JD, MacCuspie RI, Guha S, Zachariah MR, Hackley VA (2012) Nanoscale 4:3208–3217

    Article  CAS  Google Scholar 

  12. Cho TJ, MacCuspie RI, Gigault J, Gorham JM, Elliott JT, Hackley VA (2014) Langmuir 30:3883–3893

    Article  CAS  Google Scholar 

  13. Keene AM, Allaway RJ, Sadrieh N, Tyner KM (2011) Nanotoxicology 5:469–478

    Article  CAS  Google Scholar 

  14. Keene AM, Peters D, Rouse R, Stewart S, Rosen ET, Tyner KM (2012) Nanomedicine-UK 7:618

    Article  Google Scholar 

  15. Wei A, Mehtala JG, Patri AK (2012) J Control Release 164:236–246

    Article  CAS  Google Scholar 

  16. Adiseshaiah PP, Hall JB, McNeil SE (2010) WIREs Nanomed Nanobiotechnol 2:99–112

    Article  CAS  Google Scholar 

  17. Fubini B, Fenoglio I, Tomatis M, Turci F (2011) Nanomedicine-UK 6:899–920

    Article  CAS  Google Scholar 

  18. Wang J, Byrne JD, Napier ME, DeSimone JM (2011) Small 7:1919–1931

    Article  CAS  Google Scholar 

  19. Parrott MC, DeSimone JM (2012) Nat Chem 4:13–14

    Article  CAS  Google Scholar 

  20. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM (2012) Nano Lett 12:5304–5310

    Article  CAS  Google Scholar 

  21. Tsai DH, Cho TJ, Elzey SR, Gigault JC, Hackley VA (2013) Nanoscale 5:5390–5395

    Article  CAS  Google Scholar 

  22. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology

  23. Tsai DH, Cho TJ, DelRio FW, Taurozzi J, Zachariah MR, Hackley VA (2011) J Am Chem Soc 133:8884–8887

    Article  CAS  Google Scholar 

  24. Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Langmuir 27:2464–2477

    Article  CAS  Google Scholar 

  25. Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) J Appl Crystallogr 42:469–479

    Article  CAS  Google Scholar 

  26. Ilavsky J, Jemian PR (2009) J Appl Crystallogr 42:347–353

    Article  CAS  Google Scholar 

  27. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE (2013) Integr Biol-UK 5:66–73

    Article  CAS  Google Scholar 

  28. Reports of Investigation: SRM8011, SRM8012, SRM8013, National Institute of Standards and Technology, United States of America

  29. Tsai DH, DelRio FW, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2010) Langmuir 26:10325–10333

    Article  CAS  Google Scholar 

  30. Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Langmuir 27:9302–9313

    Article  CAS  Google Scholar 

  31. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Chem Soc Rev 39:1805–1834

    Article  CAS  Google Scholar 

  32. Maus L, Spatz JP, Fiammengo R (2009) Langmuir 25:7910–7917

    Article  CAS  Google Scholar 

  33. Elzey S, Tsai DH, Yu LL, Winchester MR, Kelley ME, Hackley VA (2013) Anal Bioanal Chem 405:2279–2288

    Article  CAS  Google Scholar 

  34. Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lammerhofer M (2013) ACS Nano 7:1129–1136

    Article  CAS  Google Scholar 

  35. Liu JY, Murphy KE, MacCuspie RI, Winchester MR (2014) Anal Chem 86:3405–3414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Katherine Tyner at the U.S. Food and Drug Administration, Center for Drug Evaluation and Research, for providing test samples used in this study and for helpful comments. The authors also thank Hsiao-Fang Wang and Rong-Ming Ho at NTHU for assistance in TEM. DHT and YFL thank the Ministry of Science and Technology of the Republic of China (Taiwan), for financial support of this research under Contract no. Grant NSC102-2218-E-007-015-MY2.

Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant number NSF/CHE-1346572.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Hao Tsai or Vincent A. Hackley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, DH., Lu, YF., DelRio, F.W. et al. Orthogonal analysis of functional gold nanoparticles for biomedical applications. Anal Bioanal Chem 407, 8411–8422 (2015). https://doi.org/10.1007/s00216-015-9011-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9011-9

Keywords

Navigation