Skip to main content

Advertisement

Log in

“Dilute-and-inject” multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0 %); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20 %); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8–105.5 %, glycerol 85.1–98.3 % at three concentration levels) and ion suppression/enhancement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WADA (2014) The 2014 Prohibited List International Standard. Available at: https://wada-main-prod.s3.amazonaws.com/resources/files/WADA-Revised-2014-Prohibited-List-EN.PDF. Accessed 13 Nov 2014

  2. Guddat S, Solymos E, Orlovius A, Thomas A, Sigmund G, Geyer H, Thevis M, Schänzer W (2011) High-throughput screening for various classes of doping agents using a new ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry multi-target approach. Drug Test Anal 3:836–850

    Article  CAS  Google Scholar 

  3. Thörngren JO, Östervall F, Garle M (2008) A high-throughput multicomponent screening method for diuretics, masking agents, central nervous system (CNS) stimulants and opiates in human urine by UPLC–MS/MS. J Mass Spectrom 43:980–992

    Article  Google Scholar 

  4. Badoud F, Grata E, Perrenoud L, Avois L, Saugy M, Rudaz S, Veuthey JL (2009) Fast analysis of doping agents in urine by ultra-high pressure liquid chromatography-quadrupole time-of-flight mass spectrometry: I screening analysis. J Chromatogr A 1216:4423–4433

    Article  CAS  Google Scholar 

  5. Alpert A (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  6. Olsen BA, Pack BW (2013) Hydrophilic interaction chromatography—a guide for practitioners. Wiley, New Jersey

    Book  Google Scholar 

  7. McCalley D (2010) Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. J Chromatogr A 1217:3408–3417

    Article  CAS  Google Scholar 

  8. Heaton J, Gray N, Cowan DA, Plumb RS, Legido-Quigley C, Smith NW (2012) Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the separation of ephedrines. J Chromatogr A 1228:329–337

    Article  CAS  Google Scholar 

  9. Gray N, Heaton J, Musenga A, Cowan DA, Plumb RS, Smith NW (2013) Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the quantification of ephedrines using medium-resolution accurate mass spectrometry. J Chromatogr A 1289:37–46

    Article  CAS  Google Scholar 

  10. Marclay F, Saugy M (2010) Determination of nicotine and nicotine metabolites in urine by hydrophilic interaction chromatography-tandem mass spectrometry: potential use of smokeless tobacco products by ice hockey players. J Chromatogr A 48:7528–7538

    Article  Google Scholar 

  11. Görgens C, Guddat S, Schänzer W, Thevis M (2014) Screening and confirmation of myo-inositol trispyrophosphate (ITPP) in human urine by hydrophilic interaction liquid chromatography high resolution / high accuracy mass spectrometry for doping control purposes. Drug Test Anal 6:1102–1107

    Article  Google Scholar 

  12. Kolmonen M, Leinonen A, Kuuranne T, Pelander A, Ojanpera I (2010) Hydrophilic interaction liquid chromatography and accurate mass measurement for quantification and confirmation of morphine, codeine and their glucuronide conjugates in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 29:2959–2966

    Article  Google Scholar 

  13. Mazzarino M, Fiacco I, de la Torre X, Botre F (2011) Screening and confirmation analysis of stimulants, narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 45:8156–8167

    Article  Google Scholar 

  14. Orlovius AK, Guddat S, Parr MK, Kohler M, Gutschow M, Thevis M, Schänzer W (2009) Terbutaline sulfoconjugate: characterization and urinary excretion monitored by LC/ESI-MS/MS. Drug Test Anal 1:568–575

    Article  CAS  Google Scholar 

  15. Parr MK, Orlovius AK, Guddat S, Gütschow M, Thevis M, Schänzer W (2007) Sulfoconjugates of heavy volatile nitrogen containing doping substance for improved LC-MS/MS screening. Recent Advances in Doping Analysis, Sportverl Strauß, Köln 15:97–102

    Google Scholar 

  16. WADA (2014) International Standard for Laboratories. Available at: https://wada-main-prod.s3.amazonaws.com/resources/files/WADA-ISL-2015-Final-v8.0-EN.pdf. Accessed: 13 Nov 2014

  17. WADA (2014) Technical Document - TD2014MRPL. https://wada-main-prod.s3.amazonaws.com/resources/files/WADA-TD2014MRPL-v1-Minimum-Required-Performance-Levels-EN.pdf. Accessed: 13 Nov 2014

  18. Thevis M, Sigmund G, Geyer H, Schänzer W (2010) Stimulants and doping in sport. Endocrinol Metab Clin North Am 39:89–105

    Article  CAS  Google Scholar 

  19. Dring LG, Smith RL, Williams RT (1970) Metabolic fate of amphetamine in Man and other species. Biochem J 116:425–435

    CAS  Google Scholar 

  20. Hayakawa K, Miyoshi Y, Kurimoto H, Matsushima Y, Takayama N, Tanaka S, Miyazaki M (1993) Simultaneous determination of methamphetamine and its metabolites in the urine samples of abusers by high-performance liquid-chromatography with chemiluminescence detection. Biol Pharm Bull 16:817–821

    Article  CAS  Google Scholar 

  21. Shimosato K, Tomita M, Ijiri I (1986) Urinary-excretion of P-hydroxylated methamphetamine metabolites in man. Arch Toxicol 59:135–140

    Article  CAS  Google Scholar 

  22. Shima N, Kamata HT, Katagi M, Tsuchihashi H (2006) Urinary excretion of the main metabolites of methamphetamine, including p-hydroxymethamphetamine-sulfate and p-hydroxymethamphetamine-glucuronide, in humans and rats. Xenobiotica 36:259–267

    Article  CAS  Google Scholar 

  23. Shima N, Tsutsumi H, Kamata T, Nishikawa M, Katagi M, Miki A, Tsuchihashi H (2006) Direct determination of glucuronide and sulfate of p-hydroxymethamphetamine in methamphetamine users' urine. J Chromatogr B Anal Technol Biomed Life Sci 830:64–70

    Article  CAS  Google Scholar 

  24. Hengstmann JH, Weyand U, Dengler HJ (1975) Physiological disposition of etilefrine in man. Eur J Clin Pharmacol 9:179–187

    Article  CAS  Google Scholar 

  25. Kauert G, Angermann C, Lex H, Spes C (1988) Clinical pharmacokinetics after a single oral dose of oxilofrine. Int J Clin Pharmacol Res 8:307–314

    CAS  Google Scholar 

  26. Verho M, Malerczyk V, Kauert G, Lorenz H (1988) Dose linearity and relative bioavailability testing of oxilofrine, a sympathomimetic drug, in healthy-volunteers. Int J Clin Pharmacol Res 8:211–215

    CAS  Google Scholar 

  27. Hengstmann JH, Konen W, Konen C, Eichelbaum M, Dengler HJ (1974) The physiological disposition of p-octopamine in man. Naunyn-Schmiedeberg’s Arch Pharmacol 283:93–106

    Article  CAS  Google Scholar 

  28. WADA (2014) Technical Document – TD2014DL. https://wada-main-prod.s3.amazonaws.com/resources/files/WADA-TD2014DL-v1-Decision-Limits-for-the-Quantification-of-Threshold-Substances-EN.pdf. Accessed: 13 Nov 2014

  29. Thevis M, Guddat S, Flenker U, Schänzer W (2008) Quantitative analysis of urinary glycerol levels for doping control purposes using gas-mass spectrometry. Eur J Mass Spectrom 14:117–125

    Article  CAS  Google Scholar 

  30. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134:405–415

    Article  CAS  Google Scholar 

  31. Thevis M, Thomas A, Kohler M, Beuck S, Schänzer W (2009) Emerging drugs: mechanism of action, mass spectrometry and doping control analysis. J Mass Spectrom 44:442–460

    Article  CAS  Google Scholar 

  32. Barre L, Richardson C, Hirshman MF, Brozinick J, Fiering S, Kemp BE, Goodyear LJ, Witters LA (2007) Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Am J Physiol Endocrinol Metab 292:E802–E811

    Article  CAS  Google Scholar 

  33. Thomas A, Beuck S, Eickhoff JC, Guddat S, Krug O, Kamber M, Schänzer W, Thevis M (2010) Quantification of urinary AICAR concentrations as a matter of doping controls. Anal Bioanal Chem 396:2899–2908

    Article  CAS  Google Scholar 

  34. Piper T, Thomas A, Baume N, Sobolevsky T, Saugy M, Rodchenkov G, Schänzer W, Thevis M (2014) Determination of 13C/12C ratios of endogenous urinary 5-amino-imidazole-4-carboxamide 1β-D-ribofuranoside (AICAR). Rapid Commun Mass Spectrom 28:1194–1202

    Article  CAS  Google Scholar 

  35. Falk O, Palonek E, Björkhem I (1988) Effect of ethanol on the ratio between testosterone and epitestosterone in urine. Clin Chem 34:1462–1464

    CAS  Google Scholar 

  36. Geyer H, Mareck U, Haenelt N, Schänzer W (2009) Atypical steroid profiles in connection with ethanol findings in urine. Recent advances in doping analysis, sportverl. Strauß, Köln 17:261–264

    Google Scholar 

  37. Große J, Anielski P, Sachs H, Thieme D (2009) Ethylglucuronide as a potential marker for alcohol-induced elevation of urinary testosterone/epitestosterone ratios. Drug Test Analysis 1:526–530

    Article  Google Scholar 

  38. Görgens C, Guddat S, Thomas A, Geyer H, Schänzer W (2011) Identification and quantitative determination of long-term alcohol markers ethylglucuronide and ethylsulfate in human urine by LC-MS/MS in doping control analysis. Recent advances in doping analysis, sportverl. Strauß, Köln 19:209–312

    Google Scholar 

  39. Thieme D, Große J, Keller GM (2011) Urinary concentrations of ethyl glucuronide and ethyl sulfate as thresholds to determine potential ethanol-induced alteration of steroid profiles. Drug Test Analysis 3:851–856

    Article  CAS  Google Scholar 

  40. Hasselström J, Säwe J (1993) Morphine pharmacokinetics and metabolism in humans: enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet 24:344–354

    Article  Google Scholar 

  41. Osborne R, Joel S, Trew D, Slevin M (1990) Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 47:12–19

    Article  CAS  Google Scholar 

  42. Kilpatrick GJ, Smith TW (2005) Morphine-6-glucuronide: actions and mechanisms. Med Res Rev 25:521–44

    Article  CAS  Google Scholar 

  43. Fylaktakidou KC, Lehn JM, Greferath RC, Nicolau C (2005) Inositol tripyrophosphate: a new membrane permeant allosteric effector of haemoglobin. Bioorg Med Chem Lett 15:1605–1608

    Article  CAS  Google Scholar 

  44. Duarte CD, Greferath R, Nicolau C, Lehn JM (2010) Myo-inositol trispyrophosphate: a novel allosteric effector of hemoglobin with high permeation selectivity across the red blood cell plasma membrane. Chem Bio Chem 11:2543–2548

    Article  CAS  Google Scholar 

  45. Suth J (2004) Efaproxiral: a novel radiation sensitiser. Expert Opin Investig Drugs 13:543–550

    Article  Google Scholar 

Download references

Acknowledgments

This project has been carried out with the support of Antidoping Switzerland, the Federal Ministry of the Interior of the Federal Republic of Germany and the Manfred Donike Institut für Dopinganalytik e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Guddat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görgens, C., Guddat, S., Orlovius, AK. et al. “Dilute-and-inject” multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing. Anal Bioanal Chem 407, 5365–5379 (2015). https://doi.org/10.1007/s00216-015-8699-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8699-x

Keywords

Navigation