Skip to main content
Log in

Quantitative profiling of perfluoroalkyl substances by ultrahigh-performance liquid chromatography and hybrid quadrupole time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The accurate determination of perfluoroalkyl substances (PFSAs) in water, sediment, fish, meat, and human milk was achieved by ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC–QqTOF-MS) with an ABSciex Triple TOF®. A group of 21 PFSAs was selected as target to evaluate the quantitative possibilities. Full scan MS acquisition data allows quantification at relevant low levels (0.1–50 ng L−1 in water, 0.05–2 ng g−1 in sediments, 0.01–5 ng g−1 in fish and meat, and 0.005–2 ng g−1 in human milk depending on the compound). Automatic information dependent acquisition product ion mass spectrometry (IDA-MS/MS) confirms the identity even for those compounds that presented only one product ion. The preparation of a homemade database using the extracted ion chromatogram (XIC) Manager of the software based upon retention time, accurate mass, isotopic pattern, and MS/MS library searching achieves not only the successful identification of PFSAs but also of some pharmaceuticals, such as acetaminophen, ibuprofen, salicylic acid, and gemfibrozid. Mean recoveries and relative standard deviation (RSD) were 67–99 % (9–16 % RSD) for water, 62–103 % (8–18 % RSD) for sediment, 60–95 % (8–17 % RSD) for fish, 64–95 % (8–15 % RSD) for meat, and 63–95 % (8–16 %) for human milk. The quantitative data obtained for 60 samples by UHPLC–QqTOF-MS agree with those obtained by LC–MS/MS with a triple quadrupole (QqQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pico Y, Farre M, Llorca M, Barcelo D (2011) Perfluorinated compounds in food: a global perspective. Crit Rev Food Sci Nutr 51(7):605–625. doi:10.1080/10408391003721727

    Article  CAS  Google Scholar 

  2. Yamamoto A, Hisatomi H, Ando T, Takemine S, Terao T, Tojo T, Yagi M, Ono D, Kawasaki H, Arakawa R (2014) Use of high-resolution mass spectrometry to identify precursors and biodegradation products of perfluorinated and polyfluorinated compounds in end-user products. Anal Bioanal Chem 406(19):4745–4755. doi:10.1007/s00216-014-7862-0

    Article  CAS  Google Scholar 

  3. Wang ZY, Cousins IT, Scheringer M, Buck RC, Hungerbuhler K (2014) Global emission inventories for C-4-C-14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 70:62–75. doi:10.1016/j.envint.2014.04.013

    Article  Google Scholar 

  4. Ng CA, Hungerbuhler K (2014) Bioaccumulation of perfluorinated alkyl acids: observations and models. Environ Sci Technol 48(9):4637–4648. doi:10.1021/es404008g

    Article  CAS  Google Scholar 

  5. European Food Safety Authority (2008) Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific opinion of the panel on contaminants in the food chain. EFSA J 2008:131

    Google Scholar 

  6. Stockholm Convention (2011) The new POPs under the Stockholm Convention. http://chm.pops.int/Implementation/NewPOPs/TheNewPOPs/tabid/672/Default.aspx. Accessed 1 Jan 2014

  7. Directive 2006/122/EC of the European Parliament and of the Council of 12 December 2006 amending for the 30th time Council Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations (perfluorooctane sulfonates). Off J Eur Commun 2006:3

  8. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Commun 2013:17

  9. Zhou Z, Shi YL, Vestergren R, Wang T, Liang Y, Cai YQ (2014) Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake, China. Environ Sci Technol 48(7):3864–3874. doi:10.1021/es4057467

    Article  CAS  Google Scholar 

  10. Salihovic S, Karrman A, Lindstrom G, Lind PM, Lind L, van Bavel B (2013) A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1305:164–170. doi:10.1016/j.chroma.2013.07.026

    Article  CAS  Google Scholar 

  11. Luque N, Ballesteros-Gomez A, van Leeuwen S, Rubio S (2012) A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. J Chromatogr A 1235:84–91. doi:10.1016/j.chroma.2012.02.055

    Article  CAS  Google Scholar 

  12. Zhang T, Qin XL (2014) Assessment of fetal exposure and maternal elimination of perfluoroalkyl substances. Environ Sci Process Impacts 16(8):1878–1881. doi:10.1039/c4em00129j

    Article  CAS  Google Scholar 

  13. Chung SWC, Lam CH (2014) Development of an ultraperformance liquid chromatography-tandem mass spectrometry method for the analysis of perfluorinated compounds in fish and fatty food. J Agric Food Chem 62(25):5805–5811. doi:10.1021/jf502326h

    Article  CAS  Google Scholar 

  14. Zabaleta I, Bizkarguenaga E, Iparragirre A, Navarro P, Prieto A, Fernandez LA, Zuloaga O (2014) Focused ultrasound solid-liquid extraction for the determination of perfluorinated compounds in fish, vegetables and amended soil. J Chromatogr A 1331:27–37. doi:10.1016/j.chroma.2014.01.025

    Article  CAS  Google Scholar 

  15. Llorca M, Farre M, Pico Y, Teijon ML, Alvarez JG, Barcelo D (2010) Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Int 36(6):584–592. doi:10.1016/j.envint.2010.04.016

    Article  CAS  Google Scholar 

  16. Ahrens L, Bundschuh M (2014) Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem 33(9):1921–1929. doi:10.1002/etc.2663

    Article  CAS  Google Scholar 

  17. Pan CG, Ying GG, Liu YS, Zhang QQ, Chen Z, Peng FJ, Huang GY (2014) Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China. Chemosphere 114:16–25. doi:10.1016/j.chemosphere.2014.04.005

    Article  CAS  Google Scholar 

  18. Boone JS, Guan B, Vigo C, Boone T, Byrne C, Ferrario J (2014) A method for the analysis of perfluorinated compounds in environmental and drinking waters and the determination of their lowest concentration minimal reporting levels. J Chromatogr A 1345:68–77. doi:10.1016/j.chroma.2014.04.001

    Article  CAS  Google Scholar 

  19. Arvaniti OS, Asimakopoulos AG, Dasenaki ME, Ventouri EI, Stasinakis AS, Thomaidis NS (2014) Simultaneous determination of eighteen perfluorinated compounds in dissolved and particulate phases of wastewater, and in sewage sludge by liquid chromatography-tandem mass spectrometry. Anal Method 6(5):1341–1349. doi:10.1039/c3ay42015a

    Article  CAS  Google Scholar 

  20. Campo J, Masia A, Pico Y, Farre M, Barcelo D (2014) Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants. Sci Total Environ 472:912–922. doi:10.1016/j.scitotenv.2013.11.056

    Article  CAS  Google Scholar 

  21. Allred BM, Lang JR, Barlaz MA, Field JA (2014) Orthogonal zirconium diol/C18 liquid chromatography-tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. J Chromatogr A 1359:202–211. doi:10.1016/j.chroma.2014.07.056

    Article  CAS  Google Scholar 

  22. Onghena M, Moliner-Martinez Y, Pico Y, Campins-Falco P, Barcelo D (2012) Analysis of 18 perfluorinated compounds in river waters: comparison of high performance liquid chromatography-tandem mass spectrometry, ultra-high-performance liquid chromatography-tandem mass spectrometry and capillary liquid chromatography-mass spectrometry. J Chromatogr A 1244:88–97. doi:10.1016/j.chroma.2012.04.056

    Article  CAS  Google Scholar 

  23. Llorca M, Farre M, Pico Y, Muller J, Knepper TP, Barcelo D (2012) Analysis of perfluoroalkyl substances in waters from Germany and Spain. Sci Total Environ 431:139–150. doi:10.1016/j.scitotenv.2012.05.011

    Article  CAS  Google Scholar 

  24. Farre M, Pico Y, Barcelo D (2013) Direct peel monitoring of xenobiotics in fruit by direct analysis in real time coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Anal Chem 85(5):2638–2644. doi:10.1021/ac3026702

    Article  CAS  Google Scholar 

  25. Masia A, Ibanez M, Blasco C, Sancho JV, Pico Y, Hernandez F (2013) Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal Chim Acta 761:117–127. doi:10.1016/j.aca.2012.11.032

    Article  CAS  Google Scholar 

  26. Pena-Abaurrea M, Jobst KJ, Ruffolo R, Shen L, McCrindle R, Helm PA, Reiner EJ (2014) Identification of potential novel bioaccumulative and persistent chemicals in sediments from Ontario (Canada) using scripting approaches with GCxGC-TOF MS analysis. Environ Sci Technol 48(16):9591–9599. doi:10.1021/es5018152

    Article  CAS  Google Scholar 

  27. Herrero P, Borrull F, Marce RM, Pocurull E (2014) A pressurised hot water extraction and liquid chromatography-high resolution mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J Chromatogr A 1355:53–60. doi:10.1016/j.chroma.2014.05.086

    Article  CAS  Google Scholar 

  28. Kern SE, Lin LA, Fricke FL (2014) Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry. J Am Soc Mass Spectrom 25(8):1482–1488. doi:10.1007/s13361-014-0912-1

    Article  CAS  Google Scholar 

  29. Masia A, Campo J, Blasco C, Pico Y (2014) Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry to identify contaminants in water: an insight on environmental forensics. J Chromatogr A 1345:86–97. doi:10.1016/j.chroma.2014.04.017

    Article  CAS  Google Scholar 

  30. Farre M, Pico Y, Barcelo D (2014) Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J Chromatogr A 1328:66–79. doi:10.1016/j.chroma.2013.12.082

    Article  CAS  Google Scholar 

  31. Llorca M, Farre M, Pico Y, Barcelo D (2010) Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds. Anal Bioanal Chem 398(3):1145–1159. doi:10.1007/s00216-010-3911-5

    Article  CAS  Google Scholar 

  32. Pico Y, Blasco C, Farre M, Barcelo D (2012) Occurrence of perfluorinated compounds in water and sediment of L'Albufera Natural Park (Valencia, Spain). Environ Sci Pollut Res 19(4):946–957. doi:10.1007/s11356-011-0560-y

    Article  CAS  Google Scholar 

  33. Lacina O, Hradkova P, Pulkrabova J, Hajslova J (2011) Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: milk and fish. J Chromatogr A 1218(28):4312–4321. doi:10.1016/j.chroma.2011.04.061

    Article  CAS  Google Scholar 

  34. Sundstrom M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang S-C, Bergman A (2011) A temporal trend study (1972–2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int 37(1):178–183. doi:10.1016/j.envint.2010.08.014

    Article  Google Scholar 

  35. Capriotti AL, Cavaliere C, Cavazzini A, Foglia P, Laganà A, Piovesana S, Samperi R (2013) High performance liquid chromatography tandem mass spectrometry determination of perfluorinated acids in cow milk. J Chromatogr A 1319:72–79. doi:10.1016/j.chroma.2013.10.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness through the projects “Assessing and predicting effects on water quantity and quality in Iberian rivers caused by global change (SCARCE)” (No. CSD2009-00065, http://www.scarceconsolider.es) and “Evaluation of emerging contaminants in the Turia River Basins: from basic research to the application of environmental forensics (EMERFOR)” (GCL2011-29703-C02-02, http://mefturia.es). We also thank the mass spectrometry section of the Central Services of Support to Experimental Research (SCSIE) of the Universitat de València for providing us access to the Linear QTOF (Applied Biosciences) and especially to Dr. Sales Galletero for helping us in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó.

Additional information

Published in the topical collection Advances in LC-MS/MS Analysis with guest editors Damià Barceló and Mira Petrovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picó, Y., Farré, M. & Barceló, D. Quantitative profiling of perfluoroalkyl substances by ultrahigh-performance liquid chromatography and hybrid quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 407, 4247–4259 (2015). https://doi.org/10.1007/s00216-015-8459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8459-y

Keywords

Navigation