Skip to main content
Log in

Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-l-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruzgas T, Gorton L, Emnéus J, Marko Varga G (1995) J Electroanal Chem 391:41–49

    Article  Google Scholar 

  2. Veitch NC (2004) Phytochemistry 65:249–259

    Article  CAS  Google Scholar 

  3. Dzyadevych SV, Arkhypova VN, Soldatkin AP, Elskaya AV, Martelet C, Jaffrezic-Renault N (2008) ITBM-RBM 29:171–180

    Google Scholar 

  4. Habermüller K, Mosbach M, Schuhmann W (2000) J Anal Chem 366:560–568

    Article  Google Scholar 

  5. Battistuzzi G, Stampler J, Bellei M et al (2011) Biochemistry 50:7987–7994

    Article  CAS  Google Scholar 

  6. Lindgren A, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IY, Gazaryan IG (2000) Biosens Bioelectron 15:491–497

    Article  CAS  Google Scholar 

  7. Lindgren A, Emneus J, Ruzgas T, Gorton L, Marko-Varga G (1997) Anal Chim Acta 347:51–62

    Article  CAS  Google Scholar 

  8. Konash A, Magner E (2006) Biosens Bioelectron 22:116–123

    Article  CAS  Google Scholar 

  9. Periasamy AP, Yang S, Chen SM (2011) Talanta 87:15–23

    Article  CAS  Google Scholar 

  10. Yang Y, Yang G, Huang Y, Bai H, Lu X (2009) Colloids Surf A 340:50–55

    Article  CAS  Google Scholar 

  11. Wang S, Xie F, Liu G (2009) Talanta 77:1343–1350

    Article  CAS  Google Scholar 

  12. Xiang C, Zou Y, Sun LX, Xu F (2009) Sens Actuators B 136:158–162

    Article  CAS  Google Scholar 

  13. Wang Y, Ma X, Wen Y, Xing Y, Zhang Z, Yang H (2010) Biosens Bioelectron 25:2442–2446

    Article  CAS  Google Scholar 

  14. Astuti Y, Topoglidis E, Cass AG, Durrant JR (2009) Anal Chim Acta 648:2–6

    Article  CAS  Google Scholar 

  15. Liu J, Li Y, Huang X, Zhu Z (2010) Nanoscale Res Lett 5:1177–1181

    Article  CAS  Google Scholar 

  16. He P, Hu N (2004) Electroanalysis 16:1122–1131

    Article  CAS  Google Scholar 

  17. Ansari AA, Solanki PR, Malhotra BD (2009) J Biotechnol 142:179–184

    Article  CAS  Google Scholar 

  18. Mohammadi A, Moghaddam AB, Kazemzad M, Dinarvand R, Badraghi J (2009) Mater Sci Eng C 29:1752–1758

    Article  CAS  Google Scholar 

  19. Yang X, Chen X, Zhang X, Yang W, Evans DG (2008) Sens Actuators B 134:182–188

    Article  CAS  Google Scholar 

  20. Zong S, Cao Y, Zhou Y, Ju H (2006) Langmuir 22:8915–8919

    Article  CAS  Google Scholar 

  21. Periasamy AP, Ting SW, Chen SM (2011) Int J Electrochem Sci 6:2688–2709

    CAS  Google Scholar 

  22. Yaropolov AI, Tarasevich MR, Vorfolomeev SD (1978) Bioelectrochem Bioenerg 5:18–24

    Article  CAS  Google Scholar 

  23. Kong YT, Boopathi M, Shim YB (2003) Biosens Bioelectron 19:227–232

    Article  CAS  Google Scholar 

  24. Jiangwen L, Lihong L, Fei X, Hhe G, Rui Y, Faqiong Z, Ling H, Baizhao Z (2008) J Electroanal Chem 613:51–57

    Article  Google Scholar 

  25. Song Y, Wang L, Ren C, Zhu G, Li Z (2006) Sens Actuat B 114:1001–1006

    Article  CAS  Google Scholar 

  26. Zhongqiang T, Ruo Y, Yaqin C, Shihong C, Yi X (2007) Biotechnol Lett 29:791–795

    Article  Google Scholar 

  27. Adeyoju O, Iwuoha EI, Smyth MR (1994) Anal Proc 31:177–179

    Article  Google Scholar 

  28. Comtat M, Durliat H (1994) Biosens Bioelectron 9:663–668

    Article  CAS  Google Scholar 

  29. Lindgren A, Munteanu FD, Gazayan IG, Ruzgas T, Gorton L (1998) J Electroanal Chem 458:113–120

    Article  CAS  Google Scholar 

  30. Huang R, Hu N (2001) Bioelectrochemistry 54:75–81

    Article  CAS  Google Scholar 

  31. Tarasevich MR, Bogdanovskaya VA, Fridman VA, Kuznetsova LN (2001) Russ J Electrochem 37:730–734

    Article  Google Scholar 

  32. Tatsuma T, Mori H, Fujishima A (2000) Anal Chem 72:2919–2924

    Article  CAS  Google Scholar 

  33. Hart JP, Wring SA (1994) Electroanalysis 6:617–624

    Article  CAS  Google Scholar 

  34. Hart JP, Wring SA (1997) Trends Anal Chem 16:89–103

    Article  CAS  Google Scholar 

  35. Honeychurch KC, Hart JP (2003) Trends Anal Chem 22:456–469

    Article  CAS  Google Scholar 

  36. Merkoci A, Pumera M, Llopis X, Perez B, Del Valle M, Alegret S (2005) Trends Anal Chem 24:826–838

    Article  CAS  Google Scholar 

  37. Wang J, Liu G, Jan MR (2004) J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  38. Robertson J (2004) Mater Today 7:46–52

    Article  CAS  Google Scholar 

  39. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 73:915–920

    Article  CAS  Google Scholar 

  40. Musameh M, Wang J, Merkoc i A, Lin Y (2002) Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  41. García-González R, Fernández-Abedul MT, Pernía A, Costa-García A (2008) Electrochim Acta 53:3242–3249

    Article  Google Scholar 

  42. Lindgren A, Tanaka M, Ruzgas T, Gorton L, Gazaryan I, Ishimori K, Morishima I (1999) Electrochem Commun 1:171–175

    Article  CAS  Google Scholar 

  43. Elkaoutit M, Naranio-Rodrigueza I, Domínguez M, Hernandez-Artig MP, Bellido-Milla D, De Cisnerosa JLHH (2008) Electrochim Acta 53:7131–7137

    Article  CAS  Google Scholar 

  44. Liu CY, Hu JM (2008) Chin Chem Lett 19:955–958

    Article  CAS  Google Scholar 

  45. Lin J, Zhang L, Zhang S (2007) Anal Biochem 370:180–185

    Article  CAS  Google Scholar 

  46. Yao H, Li N, Xu S, Xu JZ, Zhu JJ, Chen HY (2005) Biosens Bioelectron 21:372–377

    Article  CAS  Google Scholar 

  47. Chen S, Yuan R, Chai Y, Yin B, Li W, Min L (2009) Electrochim Acta 54:3039–3046

    Article  CAS  Google Scholar 

  48. Teng YJ, Zuo SH, Lan MB (2009) Biosens Bioelectron 24:1353–1357

    Article  CAS  Google Scholar 

  49. Rosatto SS, Sotomayor PT, Kubota LT, Gushikem Y (2002) Electrochim Acta 47:4451–4458

    Article  CAS  Google Scholar 

  50. Santos AS, Pereira AC, Sotomayor MDPT, Tarley CRT, Durán N, Kubota LT (2007) Electroanalysis 19:549–554

    Article  CAS  Google Scholar 

  51. Munteanu FD, Lindgren A, Emnéus J, Gorton L, Ruzgas T, Csöregi E, Ciucu A, Huystee RBV, Gazaryan IG, Lagrimini LM (1998) Anal Chem 70:2596–2600

    Article  CAS  Google Scholar 

  52. Li J, Xiao LT, Liu XM, Zeng GM, Huang GH, Shen GL, Yu RQ (2003) Anal Bioanal Chem 376:902–907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekin, F., Gorton, L. & Tapsobea, I. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor. Anal Bioanal Chem 407, 439–446 (2015). https://doi.org/10.1007/s00216-014-8282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8282-x

Keywords

Navigation