Skip to main content
Log in

Aequorin mutants with increased thermostability

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McConkey D, Nutt L (2004) Methods Mol Biol 282:117–130

    CAS  Google Scholar 

  2. Tanahashi H et al (1990) Gene 96(2):249–255

    Article  CAS  Google Scholar 

  3. Ziemek R et al (2006) Eur J Pharmacol 10–18

  4. Rowe L, Dikici E, Daunert S (2009) Anal Chem 21:8662–8668

    Article  Google Scholar 

  5. Lewis J, Daunert S (2000) Fresenius J Anal Chem 366(6–7):760–768

    Article  CAS  Google Scholar 

  6. Koksharov M, Ugarova N (2011) Protein Eng Des Sel 15:835–844

    Article  Google Scholar 

  7. Head J, Inouye S, Teranishi K, Shimomura O (2000) Nature 405(6784):372–376

    Article  CAS  Google Scholar 

  8. Stepanyuk et al (2005) FEBS Lett 579(5):1008–1014

    Article  CAS  Google Scholar 

  9. Tsuzuki K et al (2005) J Biol Chem 280(4):34324–34331

    Article  CAS  Google Scholar 

  10. Tricoire L et al (2005) PNAS USA 103(25):9500–9505

    Article  Google Scholar 

  11. Kurose K et al (1989) PNAS USA 86(1):80–84

    Article  CAS  Google Scholar 

  12. Ohmiya Y, Ohashi M, Tsuji F (1992) FEBS Lett 301(2):197–201

    Article  CAS  Google Scholar 

  13. Ohmiya Y, Tsuji F (1993) FEBS Lett 320(3):267–270

    Article  CAS  Google Scholar 

  14. Nomura M et al (1991) FEBS Lett 295(1–3):63–66

    Article  CAS  Google Scholar 

  15. Watkins N, Campbell A (1993) Biochem J 293:181–185

    CAS  Google Scholar 

  16. Shimomura O, Musicki B, Kishi Y (1988) Biochem J 252(2):405–410

    Google Scholar 

  17. Shimomura O, Musicki B, Kishi Y (1989) Biochem J 261(3):913–920

    CAS  Google Scholar 

  18. Shimomura O (1995) Biochem J 306:537–543

    CAS  Google Scholar 

  19. Rowe L et al (2008) Protein Eng Des Sel 21(2):73–81

    Article  CAS  Google Scholar 

  20. Dikici E et al (2009) Protein Eng Des Sel 22(4):243–248

    Article  CAS  Google Scholar 

  21. Negishi T et al (2005) Biochim Biophys Acta 1722(3):331–342

    Article  CAS  Google Scholar 

  22. Miyazaki K et al (2006) J Biol Chem 281(15):10236–10242

    Article  CAS  Google Scholar 

  23. Shrestha S, Paeng I, Deo S, Daunert S (2000) Bioconjug Chem 13(2):269–275

    Article  Google Scholar 

  24. Prendergast F (2000) Nature 405(6784):291–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health. S.D. is grateful for support from the Lucille P. Markey Chair in Biochemistry and Molecular Biology of the Miller School of Medicine of the University of Miami as well as from a Gill Eminent Professorship from the University of Kentucky. Xiaoge Qu acknowledges support from a Research Challenge Trust Fund Fellowship from the University of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Additional information

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

This work was completed at University of Kentucky, Department of Chemistry, Lexington, KY 40506, USA

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Rowe, L., Dikici, E. et al. Aequorin mutants with increased thermostability. Anal Bioanal Chem 406, 5639–5643 (2014). https://doi.org/10.1007/s00216-014-8039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8039-6

Keywords

Navigation