Skip to main content
Log in

Intermolecular charge-transfer complex between solute and ionic liquid: experimental and theoretical studies

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ground-state intermolecular donor–acceptor complex ([MCP][NTf2]-MN; 1:1) is formed between π-electron of 1-methyl-naphthalene (MN) as solute (electron-rich) and π+ electron of 1-methyl-4-cyanopyridinium bis((trifluoromethyl)sulfonyl)amide ([MCP][NTf2]) as solvent (electron deficient), observed in solid state. Intermolecular charge-transfer (IMCT) band is observed, indicating the formation of stable [MCP][NTf2]-MN complex. The IMCT process of [MCP][NTf2]-MN complex depends on relative strength of ππ+ stack between cation of [MCP][NTf2] IL and aromatic unit of MN. From DFT studies, it is clear that the geometry and interactions in [MCP][NTf2]-MN complex are also influenced by NTf2 anion. This solute–solvent interaction shows the deviation of inertness nature of [MCP][NTf2] IL. AIM analysis, electron localization function (ELF) and localized orbital locator (LOL) surface maps are obtained to achieve information regarding intermolecular interactions in the complex. Hirshfeld surface analysis and its fingerprint maps are used to identify pairwise interactions between atoms in order to avail molecular packing of the complexes from crystallographic data. NCI plots display combination of specific atom–atom interactions through hydrogen bond and vdW interactions. AIMD study shows that the complex attains a lower energy of − 2630.72 hartree at 125 and 445 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its additional files.

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  PubMed  Google Scholar 

  2. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  PubMed  Google Scholar 

  3. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117(10):7190–7239

    Article  CAS  PubMed  Google Scholar 

  5. Weingärtner H (2008) Understanding Ionic liquids at the molecular level: facts problems, and controversies. Angew Chem Int Ed 47(4):654–670

    Article  Google Scholar 

  6. Nese C, Unterreiner A-N (2010) Photochemical processes in ionic liquids on ultrafast timescales. Phys Chem Chem Phys 12(8):1698–1708

    Article  CAS  PubMed  Google Scholar 

  7. Samanta A (2010) Solvation dynamics in ionic liquids: what we have learned from the dynamic fluorescence stokes shift studies. J Phys Chem Lett 1(10):1557–1562

    Article  CAS  Google Scholar 

  8. Strehmel V (2012) Radicals in ionic liquids. ChemPhysChem 13(7):1649–1663

    Article  CAS  PubMed  Google Scholar 

  9. Koch M, Rosspeintner A, Angulo G, Vauthey E (2012) Bimolecular photoinduced electron transfer in imidazolium-based room-temperature ionic liquids is not faster than in conventional solvents. J Am Chem Soc 134(8):3729–3736

    Article  CAS  PubMed  Google Scholar 

  10. Nagasawa Y, Miyasaka H (2014) Ultrafast solvation dynamics and charge transfer reactions in room temperature ionic liquids. Phys Chem Chem Phys 16(26):13008–13026

    Article  CAS  PubMed  Google Scholar 

  11. Wu B, Maroncelli M, Castner EW Jr (2017) Photoinduced bimolecular electron transfer in ionic liquids. J Am Chem Soc 139(41):14568–14585

    Article  CAS  PubMed  Google Scholar 

  12. Kumar S, Kumar S, Rai RN, Lee Y, Nguyen THC, YoungKim S, Le Van Q, Singh L (2023) Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Sol Energy 249:606–623

    Article  CAS  Google Scholar 

  13. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580

    Article  Google Scholar 

  14. Murugesan S, Quintero OA, Chou BP, Xiao P, Park K, Hall JW, Jones RA, Henkelman G, Goodenough JB, Stevenson KJ (2014) Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. J Mater Chem A 2(7):2194–2201

    Article  CAS  Google Scholar 

  15. Yamamoto M, Wajima T, Kameyama A, Itoh K (1992) Infrared reflection absorption spectroscopic study on the photodimerization process of a stilbazolium cation embedded in Langmuir–Blodgett films. J Phys Chem 96(25):10365–10371

    Article  CAS  Google Scholar 

  16. Engleitner S, Seel M, Zinth W (1999) Nonexponentialities in the ultrafast electron-transfer dynamics in the system oxazine 1 in N, N-dimethylaniline. J Phys Chem A 103(16):3013–3019

    Article  CAS  Google Scholar 

  17. Castner EW, Kennedy D, Cave RJ (2000) Solvent as electron donor: donor/acceptor electronic coupling is a dynamical variable. J Phys Chem A 104(13):2869–2885

    Article  CAS  Google Scholar 

  18. Morandeira A, Fürstenberg A, Vauthey E (2004) Fluorescence quenching in electron-donating solvents. 2. Solvent dependence and product dynamics. J Phys Chem A 108(40):8190–8200

    Article  CAS  Google Scholar 

  19. Ojima S, Miyasaka H, Mataga N (1990) Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes in solution. 1. Charge separation processes in the course of the relaxation from the excited Franck-Condon state of 1,2,4,5-tetracyanobenzene in benzene and methyl-substituted benzene solutions. J Phys Chem 94(10):4147–4152

    Article  CAS  Google Scholar 

  20. Iwai S, Murata S, Tachiya M (1998) Ultrafast fluorescence quenching by electron transfer and fluorescence from the second excited state of a charge transfer complex as studied by femtosecond up-conversion spectroscopy. J Chem Phys 109(14):5963–5970

    Article  CAS  Google Scholar 

  21. Rosspeintner A, Angulo G, Vauthey E (2012) Driving force dependence of charge recombination in reactive and nonreactive solvents. J Phys Chem A 116(38):9473–9483

    Article  CAS  PubMed  Google Scholar 

  22. Araque JC, Yadav SK, Shadeck M, Maroncelli M, Margulis CJ (2015) How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes–Einstein behavior explained. J Phys Chem B 119(23):7015–7029

    Article  CAS  PubMed  Google Scholar 

  23. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia Lopes JN, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112(29):8645–8650

    Article  CAS  PubMed  Google Scholar 

  24. Klähn M, Seduraman A, Wu P (2011) Proton transfer between tryptophan and ionic liquid solvents studied with molecular dynamics simulations. J Phys Chem B 115(25):8231–8241

    Article  PubMed  Google Scholar 

  25. Chuang TJ, Eisenthal KB (1973) Measurements of the rate of the excited charge-transfer complex formation using picosecond laser pulses. J Chem Phys 59(4):2140–2141

    Article  CAS  Google Scholar 

  26. Majhi D, Dvinskikh SV (2021) Ion conformation and orientational order in a dicationic ionic liquid crystal studied by solid-state nuclear magnetic resonance spectroscopy. Sci Rep 11(1):5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper AK (2005) Structure of ionic Liquid−Benzene mixtures. J Phys Chem B 109(4):1593–1598

    Article  CAS  PubMed  Google Scholar 

  28. Holbrey JD, Reichert WM, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers RD (2003) Liquid clathrate formation in ionic liquid–aromatic mixtures. Chem Commun 4:476–477

    Article  Google Scholar 

  29. Bowron DT, Finney JL, Soper AK (2006) The structure of liquid tetrahydrofuran. J Am Chem Soc 128(15):5119–5126

    Article  CAS  PubMed  Google Scholar 

  30. Hardacre C, Holbrey JD, Mullan CL, Nieuwenhuyzen M, Youngs TGA, Bowron DT, Teat SJ (2010) Solid and liquid charge-transfer complex formation between 1-methylnaphthalene and 1-alkyl-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. Phys Chem Chem Phys 12(8):1842–1853

    Article  CAS  PubMed  Google Scholar 

  31. Aster A, Vauthey E (2018) More than a solvent: donor–acceptor complexes of ionic liquids and electron acceptors. J Phys Chem B 122(9):2646–2654

    Article  CAS  PubMed  Google Scholar 

  32. Bauschlicher CW Jr, Partridge H (1995) The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD (T) and B3LYP. Chem Phys Lett 240(5–6):533–540

    Article  CAS  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  34. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654

    Article  CAS  Google Scholar 

  35. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  Google Scholar 

  36. McLean A, Chandler G (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J Chem Phys 72(10):5639–5648

    Article  CAS  Google Scholar 

  37. Frisch GMJ (2016) Revision A.02, Gaussian Inc., Wallingford CT

  38. Izgorodina EI, Golze D, Maganti R, Armel V, Taige M, Schubert TJS, MacFarlane DR (2014) Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids. Phys Chem Chem Phys 16(16):7209–7221

    Article  CAS  PubMed  Google Scholar 

  39. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  41. Afonin AV, Semenov VA, Vashchenko AV (2022) Digitization of the electron shell <i>via</i> the localized orbital locator formalism: trends in the size and electronegativity changes of atoms across the periodic table. Phys Chem Chem Phys 24(46):28127–28133

    Article  CAS  PubMed  Google Scholar 

  42. Jacobsen H (2009) Localized-orbital locator (LOL) profiles of transition-metal hydride and dihydrogen complexes <sup>, </sup>. Can J Chem 87(7):965–973

    Article  CAS  Google Scholar 

  43. Jacobsen H (2008) Localized-orbital locator (LOL) profiles of chemical bonding. Can J Chem 86(7):695–702

    Article  CAS  Google Scholar 

  44. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: The electron localization function. Angew Chem Int Ed Engl 36(17):1808–1832

    Article  CAS  Google Scholar 

  45. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78

    Article  CAS  Google Scholar 

  46. Neese F (2022) Software update: the ORCA program system—version 5.0. Wiley Interdiscip Rev Comput Mol Sci 12(5):e1606

    Article  Google Scholar 

  47. Glendening ED, Badenhoop K, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Karafiloglou P, Landis CR, Weinhold F (2018) Theoretical Chemistry Institute, University of Wisconsin, Madison

  48. Kumar S, Das A (2012) Mimicking trimeric interactions in the aromatic side chains of the proteins: a gas phase study of indole[ellipsis (horizontal)](pyrrole)2 heterotrimer. J Chem Phys 136(17):174302

    Article  PubMed  Google Scholar 

  49. Kumar S, Das A (2012) Effect of acceptor heteroatoms on π-hydrogen bonding interactions: a study of indole⋅⋅⋅thiophene heterodimer in a supersonic jet. J Chem Phys 137(9):094309

    Article  PubMed  Google Scholar 

  50. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54(3):1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: A program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kumar S, Pande V, Das A (2012) π-hydrogen bonding wins over conventional hydrogen bonding interaction: a jet-cooled study of indole···furan heterodimer. J Phys Chem A 116(5):1368–1374

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S, Singh SK, Calabrese C, Maris A, Melandri S, Das A (2014) Structure of saligenin: microwave, UV and IR spectroscopy studies in a supersonic jet combined with quantum chemistry calculations. Phys Chem Chem Phys 16(32):17163

    Article  CAS  PubMed  Google Scholar 

  54. Kumar S, Singh SK, Vaishnav JK, Hill JG, Das A (2017) Interplay among electrostatic, dispersion, and steric interactions: spectroscopy and quantum chemical calculations of π-hydrogen bonded complexes. ChemPhysChem 18(7):828–838

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Das A (2013) Observation of exclusively π-stacked heterodimer of indole and hexafluorobenzene in the gas phase. J Chem Phys 139(10):104311

    Article  PubMed  Google Scholar 

  56. Kumar S, Biswas P, Kaul I, Das A (2011) Competition between hydrogen bonding and dispersion interactions in the indole···pyridine dimer and (indole) <sub>2</sub> ···pyridine trimer studied in a supersonic jet. J Phys Chem A 115(26):7461–7472

    Article  CAS  PubMed  Google Scholar 

  57. Panja SK, Dwivedi N, Noothalapati H, Shigeto S, Sikder AK, Saha A, Sunkari SS, Saha S (2015) Significance of weak interactions in imidazolium picrate ionic liquids: spectroscopic and theoretical studies for molecular level understanding. Phys Chem Chem Phys 17(27):18167–18177

    Article  CAS  PubMed  Google Scholar 

  58. Bader RF, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules–Dalton revisited. In: Advances in quantum chemistry, Elsevier, pp 63–124

  59. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9(8):3263–3266

    Article  CAS  PubMed  Google Scholar 

  60. Stalke D (2011) Meaningful structural descriptors from charge density. Chem: Eur J 17(34):9264–9278

    Article  CAS  PubMed  Google Scholar 

  61. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536

    Article  CAS  Google Scholar 

  62. Kumar S, Mukherjee A, Das A (2012) Structure of indole···imidazole heterodimer in a supersonic jet: a gas phase study on the interaction between the aromatic side chains of tryptophan and histidine residues in proteins. J Phys Chem A 116(47):11573–11580

    Article  CAS  PubMed  Google Scholar 

  63. Kumar S, Kaul I, Biswas P, Das A (2011) Structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet: competition between N–H···N and N–H···F interactions. J Phys Chem A 115(37):10299–10308

    Article  CAS  PubMed  Google Scholar 

  64. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754

    Article  CAS  Google Scholar 

  65. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23(6):597–604

    Article  CAS  Google Scholar 

  66. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74(6):1088–1096

    Article  CAS  Google Scholar 

  67. Afonin AV, Semenov VA, Vashchenko AV (2021) Localized orbital locator as a descriptor for quantification and digital presentation of lone pairs: benchmark calculations of 4-substituted pyridines. Phys Chem Chem Phys 23(43):24536–24540

    Article  CAS  PubMed  Google Scholar 

  68. Ormeci A, Rosner H, Wagner FR, Kohout M, Grin Y (2006) Electron localization function in full-potential representation for crystalline materials. J Phys Chem A 110(3):1100–1105

    Article  CAS  PubMed  Google Scholar 

  69. Kumar S (2022) Curcumin as a potential multiple-target inhibitor against SARS-CoV-2 infection: a detailed interaction study using quantum chemical calculations. J Serb Chem Soc 0:87–87

    Google Scholar 

  70. Kumar Panja S, Kumar S, Fazal AD, Bera S (2023) Molecular aggregation kinetics of heteropolyene: An experimental, topological and solvation dynamics studies. J Photochem Photobiol: Chem 445:115084

    Article  CAS  Google Scholar 

  71. Prasana JC, Muthu S, Abraham CS (2019) Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: a potential antiviral drug. Comput Biol Chem 78:9–17

    Article  PubMed  Google Scholar 

  72. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218

    Article  CAS  Google Scholar 

  73. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84(10):5687

    Article  CAS  Google Scholar 

  74. Dunnington BD, Schmidt JR (2012) Generalization of natural bond orbital analysis to periodic systems: applications to solids and surfaces via plane-wave density functional theory. J Chem Theory Comput 8(6):1902–1911

    Article  CAS  PubMed  Google Scholar 

  75. Ghiasi R, Mokaram EE (2012) Natural bond orbital (NBO) population analysis of iridabenzene. J Appl Chem Res 6(1):7–13

    Google Scholar 

  76. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2(1):1–42

    Article  CAS  Google Scholar 

  77. Kumar V, Kumar R, Kumar N, Kumar S (2023) Solvation dynamics of oxadiazoles as potential candidate for drug preparation, Asian J Chem 35(4)

  78. Cheong WJ, Carr PW (1988) Kamlet-Taft. Pi.* polarizability/dipolarity of mixtures of water with various organic solvents. Anal Chem 60(8):820–826

    Article  CAS  Google Scholar 

  79. Kumar Panja S, Kumar S (2023) Weak intra and intermolecular interactions via aliphatic hydrogen bonding in piperidinium based ionic liquids: experimental, topological and molecular dynamics studies. J Mol Liq 375:121354

    Article  CAS  Google Scholar 

  80. Sada PK, Bar A, Jassal AK, Kumar P, Srikrishna S, Singh AK, Kumar S, Singh L, Rai A (2023) A novel rhodamine probe acting as chemosensor for selective recognition of Cu2+ and Hg2+ ions: an experimental and first principle studies. J Fluoresc. https://doi.org/10.1007/s10895-023-03412-y

    Article  PubMed  Google Scholar 

  81. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKP acknowledges to Tarsadia Institute of Chemical Science, Uka Tarsadia University, Surat-394350, Gujarat, India, for providing infrastructure and instrument facilities. SK would like to thank Magadh University, Bodh Gaya-824234, Bihar, India, for providing infrastructure as well as instrument facilities, and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India (Grant No. SRG/2019/002284) for financial support.

Funding

SK thanks Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India (Grant No. SRG/2019/002284) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

SK and SKP conceived the study. SK and SKP involved during the development or design of methodology and performing the experimental and computational studies. SK did the funding acquisition from SERB-DST, India. SKP obtained infrastructure and instrument support from Uka Tarsadia University, Surat, India. SK and SKP involved during the original manuscript preparation and approved the final version of the manuscript.

Corresponding authors

Correspondence to Sumit Kumar or Sumit Kumar Panja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1933 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Panja, S.K. Intermolecular charge-transfer complex between solute and ionic liquid: experimental and theoretical studies. Theor Chem Acc 142, 126 (2023). https://doi.org/10.1007/s00214-023-03073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03073-x

Keywords

Navigation