Skip to main content

Advertisement

Log in

The B3S monolayer as a high-capacity anode material for sodium-ion batteries: First-principles density functional theory approach

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electrode materials with appropriate mechanical, electronic and structural attributes are prerequisites for next generation renewable energy technology. An essential stage in development of batteries to achieve superior performance is selecting an appropriate anode material. In this research, application of B3S monolayer for anode materials has been investigated employing first-principles-based DFT. For B3S monolayer, as an anode material, it is anticipated to have high performance with a low sodium diffusion barrier (Ea < 0.45 eV), low open-circuit voltage (OCV∼0.12 V), and high storage capacity (1855 mA h g−1). In addition, metallicity of B3S monolayer has been maintained at the end of Na adsorption, which reveals a favorable battery operating cycle and electrical conductivity. Our findings elucidate that these outstanding attributes cause B3S monolayer to be an attractive option for anode materials in sodium-ion batteries (NIBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and material availability

Confirm.

References

  1. Chien F (2022) How renewable energy and non-renewable energy affect environmental excellence in N-11 economies? Renew Energy 196:526–534

    Article  Google Scholar 

  2. Chodvadiya D, Som NN, Jha PK, Chakraborty B (2021) Enhancement in the catalytic activity of two-dimensional α-CN by B, Si and P doping for hydrogen evolution and oxygen evolution reactions. Int J Hydrogen Energy 46:22478–22498

    Article  CAS  Google Scholar 

  3. Abbasi KR, Shahbaz M, Zhang J, Irfan M, Alvarado R (2022) Analyze the environmental sustainability factors of China: the role of fossil fuel energy and renewable energy. Renew Energy 187:390–402

    Article  CAS  Google Scholar 

  4. Liao Q, Li S, Xi F, Tong Z, Chen X, Wan X, Ma W, Deng R (2023) High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules. Energy 281:128345

    Article  CAS  Google Scholar 

  5. Li T, Yu Y, Pei M (2023) Dual-atom doping carbon materials as highly efficient electrocatalysts for lithium–sulfur batteries: bimetallic cooperation mechanism. J Phys Chem C 127:6271–6279

    Article  CAS  Google Scholar 

  6. Zhang X, Tang Y, Zhang F, Lee CS (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6:1502588

    Article  Google Scholar 

  7. Cai X, Shadike Z, Cai X, Li X, Luo L, An L, Yin J, Wei G, Yang F, Shen S (2023) Membrane electrode assembly design for lithium-mediated electrochemical nitrogen reduction. Energy Environ Sci 16:3063–3073

    Article  CAS  Google Scholar 

  8. Sharma L, Adiga SP, Alshareef HN, Barpanda P (2020) Fluorophosphates: next generation cathode materials for rechargeable batteries. Adv Energy Mater 10:2001449

    Article  CAS  Google Scholar 

  9. Zheng T, Kramer D, Mönig R, Boles ST (2022) Aluminum foil anodes for Li-ion rechargeable batteries: the role of Li solubility within β-LiAl. ACS Sustain Chem Eng 10:3203–3210

    Article  CAS  Google Scholar 

  10. Ming J, Cao Z, Wu Y, Wahyudi W, Wang W, Guo X, Cavallo L, Hwang J-Y, Shamim A, Li L-J (2019) New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Lett 4:2613–2622

    Article  CAS  Google Scholar 

  11. Wang K, Wan J, Xiang Y, Zhu J, Leng Q, Wang M, Xu L, Yang Y (2020) Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J Power Sources 460:228062

    Article  CAS  Google Scholar 

  12. Mu X, Pan H, He P, Zhou H (2020) Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv Mater 32:1903790

    Article  CAS  Google Scholar 

  13. Khan K, Tareen AK, Aslam M, Mahmood A, Zhang Y, Ouyang Z, Guo Z, Zhang H (2020) Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog Solid State Chem 58:100254

    Article  CAS  Google Scholar 

  14. Cai S, Yan F, Zhao Y, Li M, Chen Y, He X, Wang C (2022) Hierarchical micro-composite assembled from Bi spheres and expanded graphite flakes as anodes for sodium-ion half/full cells with excellent comprehensive electrochemical performance. Chem Eng J 430:132938

    Article  CAS  Google Scholar 

  15. Chen M, Liu Q, Wang SW, Wang E, Guo X, Chou SL (2019) High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies. Adv Energy Mater 9:1803609

    Article  Google Scholar 

  16. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10:667–672

    Article  CAS  PubMed  Google Scholar 

  17. Xie J, Wei X, Bo X, Zhang P, Chen P, Hao W, Yuan M (2023) State of charge estimation of lithium-ion battery based on extended Kalman filter algorithm. Front Energy Res 11:1180881

    Article  Google Scholar 

  18. Chen L, Bao J, Dong X, Truhlar D, Wang Y, Wang C, Xia Y (2017) Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett 2:1115–1121

    Article  CAS  Google Scholar 

  19. Liu T, Zhang Y, Jiang Z, Zeng X, Ji J, Li Z, Gao X, Sun M, Lin Z, Ling M (2019) Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci 12:1512–1533

    Article  CAS  Google Scholar 

  20. Yang W, Lu Y, Zhao C, Liu H (2020) First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett 16:89–98

    Article  CAS  Google Scholar 

  21. Chang G, Zhao Y, Dong L, Wilkinson DP, Zhang L, Shao Q, Yan W, Sun XA, Zhang J (2020) A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A 8:4996–5048

    Article  CAS  Google Scholar 

  22. Huang G, Kong Q, Yao W, Wang Q (2023) High proportion of active nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries. Chemsuschem 16:e202202070

    Article  CAS  PubMed  Google Scholar 

  23. Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 7:1602898

    Article  Google Scholar 

  24. Zhao Z, Wu Y, Hu R, Lu J, Chen D, Li T, Guo Y, Zhang L, Chen H, Ye Z, Zhang C (2023) Intercalation pseudocapacitance in 2D VS2/Ti3C2Tx MXene hybrids for all-climate and long-cycle sodium-ion batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.202307794

    Article  PubMed  Google Scholar 

  25. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  26. Raugei M, Winfield P (2019) Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. J Clean Prod 213:926–932

    Article  CAS  Google Scholar 

  27. Refino AD, Yulianto N, Syamsu I, Nugroho AP, Hawari NH, Syring A, Kartini E, Iskandar F, Voss T, Sumboja A (2021) Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode. Sci Rep 11:1–15

    Article  Google Scholar 

  28. Guo J, Zhai W, Sun Q, Ai Q, Li J, Cheng J, Dai L, Ci L (2020) Facilely tunable core-shell Si@ SiOx nanostructures prepared in aqueous solution for lithium ion battery anode. Electrochim Acta 342:136068

    Article  CAS  Google Scholar 

  29. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y (2021) Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batterie. Nat Sci Rev 8(7):178

    Google Scholar 

  30. Zhang L, Gong T, Wang H, Guo Z, Zhang H (2019) Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11:12413–12435

    Article  CAS  PubMed  Google Scholar 

  31. Patra A, More MA, Late DJ, Rout CS (2021) Field emission applications of graphene analogous two dimensional materials: recent developments and future perspectives. J Mater Chem C 9(34):11059–11078

    Article  CAS  Google Scholar 

  32. Liu Y, Qin J, Lu L, Xu J, Su X (2023) Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int J Miner Metall Mater 30:525–535

    Article  Google Scholar 

  33. Ren R, Lai F, Lang X, Li L, Yao C, Cai K (2023) Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur batteries. Appl Surf Sci 613:156003

    Article  CAS  Google Scholar 

  34. Liu Y, Fan B, Xu B, Yang B (2023) Ambient-stable polyethyleneimine functionalized Ti3C2Tx nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater Lett 337:133979

    Article  CAS  Google Scholar 

  35. Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY, Ruan W, Mo SK, Hussain Z, Shen ZX, Wang F, Louie SG, Crommie MF (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091–1095

    Article  CAS  PubMed  Google Scholar 

  36. Dolui K, Quek SY (2015) Quantum-confinement and structural anisotropy result in electrically-tunable dirac cone in few-layer black phosphorous. Sci Rep 5:11699

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang Z, Luo P, Zheng H, Lyu Z, Ma X (2023) Novel one-dimensional V3S4@ NC nanofibers for sodium-ion batteries. J Phys Chem Solids 172:111081

    Article  CAS  Google Scholar 

  38. Lu S, Ban Y, Zhang X, Yang B, Liu S, Yin L, Zheng W (2022) Adaptive control of time delay teleoperation system with uncertain dynamics. Front Neurorobot 16:928863

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu Q, Luo Y, Mahmood A, Liu B, Cheng H-M (2019) Engineering two-dimensional materials and their heterostructures as high-performance electrocatalysts. Electrochem Energy Rev 2:373–394

    Article  CAS  Google Scholar 

  40. Li Z, Zhang X, Cheng H, Liu J, Shao M, Wei M, Evans DG, Zhang H, Duan X (2020) Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv Energy Mater 10:1900486

    Article  CAS  Google Scholar 

  41. Zhang X, Chen A, Chen L, Zhou Z (2022) 2D materials bridging experiments and computations for electro/photocatalysis. Adv Energy Mater 12:2003841

    Article  CAS  Google Scholar 

  42. Zhang Z, Feng L, Liu H, Wang L, Wang S, Tang Z (2022) Mo 6+–P 5+ co-doped Li 2 ZnTi 3 O 8 anode for Li-storage in a wide temperature range and applications in LiNi 0.5 Mn 1.5 O 4/Li 2 ZnTi 3 O 8 full cells. Inorg Chem Front 9:35–43

    Article  CAS  Google Scholar 

  43. Cui H, Guo Y, Ma W, Zhou Z (2020) 2 D materials for electrochemical energy storage: design, preparation, and application. Chemsuschem 13:1155–1171

    Article  CAS  PubMed  Google Scholar 

  44. Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B, Qi X (2021) Recent advances of monoelemental 2D materials for photocatalytic applications. J Hazard Mater 405:124179

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal A, Goverapet Srinivasan S, Rai B (2021) Data-driven discovery of 2D materials for solar water splitting. Front Mater 8:679269

    Article  Google Scholar 

  46. Mortazavi B, Shahrokhi M, Cuniberti G, Zhuang X (2019) Two-dimensional SiP SiAs, GeP and GeAs as promising candidates for photocatalytic applications. Coatings 9:522

    Article  CAS  Google Scholar 

  47. Zhu X, Liu M, Qi X, Li H, Zhang YF, Li Z, Peng Z, Yang J, Qian L, Xu Q (2021) Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv Mater 33:2007772

    Article  CAS  Google Scholar 

  48. Liu Z, Fan B, Zhao J, Yang B, Zheng X (2023) Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros Sci 212:110957

    Article  CAS  Google Scholar 

  49. Chen A, Zhang X, Zhou Z (2020) Machine learning: accelerating materials development for energy storage and conversion. InfoMat 2:553–576

    Article  CAS  Google Scholar 

  50. Jeong GH, Sasikala SP, Yun T, Lee GY, Lee WJ, Kim SO (2020) Nanoscale assembly of 2D materials for energy and environmental applications. Adv Mater 32:1907006

    Article  CAS  Google Scholar 

  51. Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P (2020) roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett 30(2019):2053–2064

    Google Scholar 

  52. Xia H, Zan L, Yuan P, Qu G, Dong H, Wei Y, Yu Y, Wei Z, Yan W, Hu JS (2023) Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe−Nx towards enhanced sodium ion storage. Angew Chem 135:e202218282

    Article  Google Scholar 

  53. Du Y, Xie Y, Liu X, Jiang H, Wu F, Wu H, Mei Y, Xie D (2023) In-situ formed phosphorus modified gel polymer electrolyte with good flame retardancy and cycling stability for rechargeable lithium batteries. ACS Sustain Chem Eng 11:4498–4508

    Article  CAS  Google Scholar 

  54. Guo JZ, Gu ZY, Zhao XX, Wang MY, Yang X, Yang Y, Li WH, Wu XL (2019) Flexible Na/K-ion full batteries from the renewable cotton cloth–derived stable, low-cost, and binder-free anode and cathode. Adv Energy Mater 9:1902056

    Article  CAS  Google Scholar 

  55. Li Y, Lu Y, Adelhelm P, Titirici M-M, Hu Y-S (2019) Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 48:4655–4687

    Article  CAS  PubMed  Google Scholar 

  56. Ling C, Mizuno F (2014) Boron-doped graphene as a promising anode for Na-ion batteries. Phys Chem Chem Phys 16:10419–10424

    Article  CAS  PubMed  Google Scholar 

  57. Hankel M, Ye D, Wang L, Searles DJ (2015) Lithium and sodium storage on graphitic carbon nitride. J Phys Chem C 119:21921–21927

    Article  CAS  Google Scholar 

  58. Belasfar K, Houmad M, Boujnah M, Benyoussef A, Kenz AE (2020) First-principles study of BC3 monolayer as anodes for lithium-ion and sodium-ion batteries applications. J Phys Chem Solids 139:109319

    Article  CAS  Google Scholar 

  59. Mikhaleva NS, Visotin MA, Kuzubov AA, Popov ZI (2017) VS2/graphene heterostructures as promising anode material for Li-ion batteries. J Phys Chem C 121:24179–24184

    Article  CAS  Google Scholar 

  60. Joshi RP, Ozdemir B, Barone V, Peralta JE (2015) Hexagonal BC3: a robust electrode material for Li, Na, and K ion batteries. J Phys Chem Lett 6:2728–2732

    Article  CAS  PubMed  Google Scholar 

  61. Li S, Chen J, He X, Zheng Y, Yu C, Lu H (2023) Comparative study of the micro-mechanism of charge redistribution at metal-semiconductor and semimetal-semiconductor interfaces: Pt (Ni)-MoS2 and Bi-MoS2 (WSe2) as the prototype. Appl Surf Sci 623:157036

    Article  CAS  Google Scholar 

  62. Yong Y, Hu S, Zhao Z, Gao R, Cui H, Lv Z (2021) Potential reversible and high-capacity hydrogen storage medium: Li-decorated B3S monolayers. Mater Today Commun 29:102938

    Article  CAS  Google Scholar 

  63. Jana S, Thomas S, Lee CH, Jun B, Lee SU (2019) B 3 S monolayer: prediction of a high-performance anode material for lithium-ion batteries. J Mater Chem A 7:12706–12712

    Article  CAS  Google Scholar 

  64. Shriram SR, Gourishetty R, Panda D, Das D, Dongre S, Saha J, Chakrabarti S (2022) Subsiding strain-induced In–Ga intermixing in InAs/InxGa1−xAs sub-monolayer quantum dots for room temperature photodetectors. Infrared Phys Technol 121:104047

    Article  CAS  Google Scholar 

  65. Sah BK, Kundu S (2019) Behaviour of protein (BSA)-lipid (DMPA) mixed monolayer on the spreading order of the individual component. Chem Phys Lipid 225:104810

    Article  CAS  Google Scholar 

  66. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  PubMed  Google Scholar 

  67. Adhikari K, Ray AK (2011) Carbon- and silicon-capped silicon carbide nanotubes: an ab initio study. Phys Lett Sect A Gen At Solid State Phys 375:1817–1823

    CAS  Google Scholar 

  68. Peyghan AA, Tabar MB, Yourdkhani S (2013) A theoretical study of OH and OCH<inf>3</inf> free radical adsorption on a nanosized tube of BC<inf>2</inf>N. J Cluster Sci 24:1–10

    Article  Google Scholar 

  69. Du J, Sun X, Jiang G (2010) Structures, chemical bonding, magnetisms of small Al-doped zirconium clusters. Phys Lett Sect A Gen At Solid State Phys 374:854–860

    CAS  Google Scholar 

  70. Liu X, Zhu B, Gao Y (2016) Structure stability of TiAu4 nanocluster with water adsorption. Phys Lett Sect A Gen At Solid State Phys 380:1971–1975

    CAS  Google Scholar 

  71. Bashiri S, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136:156–162

    Article  CAS  Google Scholar 

  72. Dang W, Liao S, Yang B, Yin Z, Liu M, Yin L, Zheng W (2023) An encoder-decoder fusion battery life prediction method based on Gaussian process regression and improvement. J Energy Storage 59:106469

    Article  Google Scholar 

  73. Lu S, Ding Y, Liu M, Yin Z, Yin L, Zheng W (2023) Multiscale feature extraction and fusion of image and text in VQA. Int J Comput Intell Syst 16:54

    Article  Google Scholar 

  74. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  75. Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117:6919–6923

    Article  CAS  Google Scholar 

  76. Hankel M, Searles DJ (2016) Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. Phys Chem Chem Phys 18:14205–14215

    Article  CAS  PubMed  Google Scholar 

  77. Hao W, Xie J (2021) Reducing diffusion-induced stress of bilayer electrode system by introducing pre-strain in lithium-ion battery. J Electrochem Energy Convers Storage 18:020909

    Article  CAS  Google Scholar 

  78. Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180

    Article  Google Scholar 

  79. Wang Z, Deng M, Xia X, Gao Y, Shao G (2018) Fundamental basis for distinctive sensing of H2 in humid environment. Energy Environ Mater 1:174–178

    Article  CAS  Google Scholar 

  80. Lu S, Cai Y, Hu X (2021) Tunable electronic and optical properties in buckling a non-lamellar B 3 S monolayer. Phys Chem Chem Phys 23:18669–18677

    Article  CAS  PubMed  Google Scholar 

  81. Jana S, Thomas S, Lee CH, Jun B, Lee SU (2019) B3S monolayer: prediction of a high-performance anode material for lithium-ion batteries. J Mater Chem A 7:12706–12712

    Article  CAS  Google Scholar 

  82. Lu S, Cai Y, Hu X (2021) Tunable electronic and optical properties in buckling a non-lamellar B3S monolayer. Phys Chem Chem Phys 23:18669–18677

    Article  CAS  PubMed  Google Scholar 

  83. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  84. Bhauriyal P, Mahata A, Pathak B (2018) Graphene-like carbon-nitride monolayer: a potential anode material for Na- and K-ion batteries. J Phys Chem C 122:2481–2489

    Article  CAS  Google Scholar 

  85. Lv X, Li F, Gong J, Gu J, Lin S, Chen Z (2020) Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys Chem Chem Phys 22:8902–8912

    Article  CAS  PubMed  Google Scholar 

  86. Putungan DB, Lin S-H, Kuo J-L (2016) Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl Mater Interfaces 8:18754–18762

    Article  CAS  PubMed  Google Scholar 

  87. Zhou Y, Zhao M, Chen ZW, Shi XM, Jiang Q (2018) Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys Chem Chem Phys 20:30290–30296

    Article  CAS  PubMed  Google Scholar 

  88. Bekeur CA, Mapasha RE (2023) Enhancement of electrochemical performance of monolayer SnS_2for Li/Na-ion batteries through a sulphur vacancy: a DFT study. J Solid State Electrochem 27:2445–2456

    Article  CAS  Google Scholar 

  89. Chodvadiya D, Jha U, Śpiewak P, Kurzydłowski KJ, Jha PK (2022) Potential anodic application of 2D h-AlC for Li and Na-ions batteries. Appl Surf Sci 593:153424

    Article  CAS  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Contributions

MJS, MAA, AAL: Conceptualization, Methodology, Software, Writing, Conceptualization, Methodology, Management and responsibility for the research activity planning and execution; AK, SKH, AHS: Methodology, Software, Writing—review & editing; AAK, AM: Writing—original draft, Methodology, Software, review & editing.

Corresponding author

Correspondence to Ali Majdi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not required.

Consent to participate

Confirm.

Consent for publication

Confirm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadh, M.J., Abbood, M.A., Lagum, A.A. et al. The B3S monolayer as a high-capacity anode material for sodium-ion batteries: First-principles density functional theory approach. Theor Chem Acc 142, 128 (2023). https://doi.org/10.1007/s00214-023-03070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03070-0

Keywords

Navigation