Skip to main content
Log in

Theoretical prediction for redox potentials of oxygen-centered organic anions in aprotic solvents

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

It is well known that the feasibility of electron transfer reactions and the thermodynamic relationship between radicals and anions are highly dependent on the standard redox potentials. However, due to experimental limitations on the measurement of irreversible redox reactions, it is often difficult or even impossible to obtain reliable oxidation or reduction potential data. In this study, we assessed the performance of different theoretical methods and solvation models for predicting standard oxidation potentials (\({E}_{\mathrm{ox}}^{\mathrm{o}}\)) of 33 representative anions including alcoholate, phenolate, and carboxylate anions in aprotic polar solvents. The density functional theory (DFT) M06-2X method and the composite procedure CBS-QB3 both achieved ideal precision for predicting adiabatic ionization potentials (IPs) in the gas phase, with a mean absolute deviation (MAD) value of 0.06 eV and 0.08 eV, respectively. As for solvation contributions, the SMD (solvation model density) model performed better than the latest uESE (Universal Easy Solvation Energy Evaluation) model for this kind of radical/anion couple. We suggest the optimal combination of M06-2X/ma-TZVP for IPs, and the SMD solvation model at M05-2X/6-31G(d) level is suitable for predicting \({E}_{\mathrm{ox}}^{\mathrm{o}}\), with an average error of 0.08 V. This assessment provides an alternative and reliable theoretical procedure to predict the oxidation potential and other related thermodynamic properties of O-centered organic anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Hammerich O, Speiser B (eds) (2016) Organic electrochemistry: revised and expanded, 5th edn. Boca Raton, CRC Press

    Google Scholar 

  2. Magri DC, Workentin MS (2012) Redox properties of radicals. In: Encyclopedia of radicals in chemistry, biology and materials

  3. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827

    Article  CAS  Google Scholar 

  4. Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG (2014) Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 16(29):15068–15106

    Article  CAS  PubMed  Google Scholar 

  5. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12974–12980

    Article  CAS  Google Scholar 

  6. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem 113(18):6378–6396

    Article  CAS  Google Scholar 

  7. Arumugam K, Becker U (2014) Computational redox potential predictions: applications to inorganic and organic aqueous complexes, and complexes adsorbed to mineral surfaces. Minerals 4(2):345–387

    Article  Google Scholar 

  8. Fu Y, Liu L, Wang Y-M, Li J-N, Yu T-Q, Guo Q-X (2006) Quantum-chemical predictions of redox potentials of organic anions in dimethyl sulfoxide and reevaluation of bond dissociation enthalpies measured by the electrochemical methods. J Phys Chem 110(17):5874–5886

    Article  CAS  Google Scholar 

  9. Schmidtam Busch M, Knapp E-W (2005) One-Electron Reduction Potential for Oxygen- and Sulfur-Centered Organic Radicals in Protic and Aprotic Solvents. J Am Chem Soc 127(45):15730–15737

    Article  CAS  Google Scholar 

  10. Guerard JJ, Arey JS (2013) Critical evaluation of implicit solvent models for predicting aqueous oxidation potentials of neutral organic compounds. J Chem Theory Comput 9(11):5046–5058

    Article  CAS  PubMed  Google Scholar 

  11. Männistö PT, Kaakkola S (1999) Catechol-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593

    PubMed  Google Scholar 

  12. Isegawa M, Neese F, Pantazis DA (2016) Ionization energies and aqueous redox potentials of organic molecules: comparison of DFT, correlated ab initio theory and pair natural orbital approaches. J Chem Theory Comput 12(5):2272–2284

    Article  CAS  PubMed  Google Scholar 

  13. Isse AA, Gennaro A (2010) Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. J Phys Chem 114(23):7894–7899

    Article  CAS  Google Scholar 

  14. Parker VDHKL, Roness F et al (1991) Electrode potentials and the thermodynamics of isodesmic reactions. J Am Chem Soc 113(20):7493–7498

    Article  CAS  Google Scholar 

  15. Frisch MJTG, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision E.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  16. Lewars EG (2011) Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, vol 318. Springer, New York

    Book  Google Scholar 

  17. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  18. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255(4):327–335

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  20. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    Article  CAS  Google Scholar 

  21. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    Article  PubMed  Google Scholar 

  22. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124(3):034108

    Article  PubMed  Google Scholar 

  23. Psciuk BT, Lord RL, Munk BH, Schlegel HB (2012) Theoretical determination of one-electron oxidation potentials for nucleic acid bases. J Chem Theory Comput 8(12):5107–5123

    Article  CAS  PubMed  Google Scholar 

  24. Tu Y-J, Njus D, Schlegel HB (2017) A theoretical study of ascorbic acid oxidation and HOO/O2—radical scavenging. Org Biomol Chem 15(20):4417–4431

    Article  CAS  PubMed  Google Scholar 

  25. Xu L, Coote ML (2019) Methods to improve the calculations of solvation model density solvation free energies and associated aqueous pKa values: comparison between choosing an optimal theoretical level, solute cavity scaling, and using explicit solvent molecules. J Phys Chem 123(34):7430–7438

    Article  CAS  Google Scholar 

  26. Zheng J, Xu X, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Acc 128(3):295–305

    Article  CAS  Google Scholar 

  27. Xu L, Coote ML (2019) Improving the accuracy of PCM-UAHF and PCM-UAKS calculations using optimized electrostatic scaling factors. J Chem Theory Comput 15(12):6958–6967

    Article  CAS  PubMed  Google Scholar 

  28. Vyboishchikov SF, Voityuk AA (2021) Fast non-iterative calculation of solvation energies for water and non-aqueous solvents. J Comput Chem 42(17):1184–1194

    Article  CAS  PubMed  Google Scholar 

  29. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  30. Ho J, Ertem MZ (2016) Calculating free energy changes in continuum solvation models. J Phys Chem 120(7):1319–1329

    Article  CAS  Google Scholar 

  31. Romańczyk PP, Rotko G, Kurek SS (2014) The redox potential of the phenyl radical/anion couple and the effect thereon of the lithium cation: a computational study. Electrochem Commun 48:21–23

    Article  Google Scholar 

  32. Đorović J, Marković JMD, Stepanić V, Begović N, Amić D, Marković Z (2014) Influence of different free radicals on scavenging potency of gallic acid. J Mol Model 20(7):2345

    Article  PubMed  Google Scholar 

  33. Isegawa M, Truhlar DG (2013) Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm–Dancoff approximation. J Chem Phys 138(13):134111

    Article  PubMed  Google Scholar 

  34. Isegawa M, Peverati R, Truhlar DG (2012) Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. J Chem Phys 137(24):244104

    Article  PubMed  Google Scholar 

  35. Vikramaditya T, Lin S-T (2017) Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory. J Comput Chem 38(21):1844–1852

    Article  CAS  PubMed  Google Scholar 

  36. Antonello S, Formaggio F, Moretto A, Toniolo C, Maran F (2001) Intramolecular, intermolecular, and heterogeneous nonadiabatic dissociative electron transfer to peresters. J Am Chem Soc 123(39):9577–9584

    Article  CAS  PubMed  Google Scholar 

  37. Hansch C, Leo A, Taft R (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91(2):165–195

    Article  CAS  Google Scholar 

  38. Donkers RL, Maran F, Wayner DDM, Workentin MS (1999) Kinetics of the reduction of dialkyl peroxides. New insights into the dynamics of dissociative electron transfer1. J Am Chem Soc 121(31):7239–7248

    Article  CAS  Google Scholar 

  39. Antonello S, Musumeci M, Wayner DDM, Maran F (1997) Electroreduction of dialkyl peroxides. Activation−driving force relationships and bond dissociation free energies. J Am Chem Soc 119(40):9541–9549

    Article  CAS  Google Scholar 

  40. Bordwell FG, Singer DL, Satish AV (1993) Effects of structural changes on acidities and homolytic bond dissociation energies of the nitrogen-hydrogen bonds in pyridones and related heterocycles. J Am Chem Soc 115(9):3543–3547

    Article  CAS  Google Scholar 

  41. Grampp G, Landgraf S, Mureşanu C (2004) Redox properties and bond dissociations energies of phenoxyl radicals. Electrochim Acta 49(4):537–544

    Article  CAS  Google Scholar 

  42. Bordwell FG, Cheng J (1991) Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J Am Chem Soc 113(5):1736–1743

    Article  CAS  Google Scholar 

  43. Hapiot PPJ, Yousfi N (1992) Substituent effects on the redox properties of phenolates in acetonitrile. One-electron redox potentials New J Chem 16:877–877

    CAS  Google Scholar 

  44. Antonello S, Maran F (1999) The role and relevance of the transfer coefficient α in the study of dissociative electron transfers: concepts and examples from the electroreduction of perbenzoates. J Am Chem Soc 121(41):9668–9676

    Article  CAS  Google Scholar 

  45. Zhao Y, Bordwell FG (1996) Bond dissociation free energies (BDFEs) of the acidic H−A bonds in HA radical anions by three different pathways. J Org Chem 61(19):6623–6626

    Article  CAS  PubMed  Google Scholar 

  46. Neugebauer H, Bohle F, Bursch M, Hansen A, Grimme S (2020) Benchmark study of electrochemical redox potentials calculated with semiempirical and DFT methods. J Phys Chem A 124(35):7166–7176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (NSFC 21927814) and generous support by the School of Pharmaceutical Science and Technology, Tianjin University, China, including computer time on the SPST computer cluster Arran are gratefully acknowledged.

Funding

This work was supported by National Natural Science Foundation of China (NSFC 21927814).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. JZ designed the experiments. XW performed the experiments. XW and JZ analyzed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianyu Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, F. & Zhang, J. Theoretical prediction for redox potentials of oxygen-centered organic anions in aprotic solvents. Theor Chem Acc 142, 62 (2023). https://doi.org/10.1007/s00214-023-03002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03002-y

Keywords

Navigation