Skip to main content

Advertisement

Log in

Density functional theoretical assessment of titanium metal for adsorption of hydrogen, deuterium and tritium isotopes

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Titanium, a high-temperature tolerance metal, is preferred as neutron targets due to high hydrogen storage capacity. Therefore, there is a need to understand the interaction and dynamical behaviours of hydrogen isotopes with Ti which is investigated by means of linear combination of atomic orbitals and projector augmented wave (PAW) potential within the density functional theoretical framework. The hydrogen isotope is studied by incorporating zero point energy and the harmonic transition state theory (HTST) was used to determine the rate constant. The values of surface adsorption energy of hydrogen isotopes were predicted to follow the trend: Ead(H2) > Ead(D2) > Ead(T2). The activation energy barrier from top to bridge and top to hollow sites was negative for H atom indicating barrier less diffusion. The computed total density of states and partial density of states confirmed that the hollow site offers the most stable site for H atom adsorption than that by bridge and top sites. The calculated barrier height for dissociation was 0.4 eV at surface coverage of θH > 0.5 ML, whereas the barrier height for recombination was found to be much higher than that of dissociation. The calculated dissociation rate constant using HTST was found to be quite fast, whereas the rate constant for recombination was determined to be very slow as expected. The ZPE corrected activation heights for bulk diffusion in Ti from one Td void to nearby Td void for H, D and T were computed to be 0.118, 0.126 and 0.129 eV, respectively, at the PAW level. The calculated diffusivity establishes that the lighter H atom migrates faster than that of heavier D and T atoms. The classical barrier height was observed to be reduced after quantum correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Womble P, Schultz F, Vourvopoulos G (1995) Non-destructive characterization using pulsed fast-thermal neutrons. Nucl Instrum Methods Phys Res Sect B 99:757–760

    Article  CAS  Google Scholar 

  2. Reijonen J (2005) Compact neutron generators for medical, home land security, and planetary exploration. In: Proceedings of the 2005 particle accelerator conference. IEEE. pp 49–53

  3. Gozani T, Strellis D (2007) Advances in neutron based bulk explosive detection. Nucl Instrum Methods Phys Res Sect B 261:311–315

    Article  CAS  Google Scholar 

  4. IAEA, IAEA (2012) Neutron generators for analytical purposes. International Atomic Energy Agency

  5. Kashyap Y, Agrawal A, Roy T, Sarkar P, Shukla M, Patel T, Sinha A (2016) Differential die-away analysis for detection of 235U in metallic matrix. Nucl Instrum Methods Phys Res Sect A 806:1–4

    Article  CAS  Google Scholar 

  6. Handbook D (1999) Tritium handling and safe storage. US Department of Energy Handbook DOEHDBK:1129–1199

  7. Lässer R (2013) Tritium and helium-3 in metals. Springer Science & Business Media

    Google Scholar 

  8. Kudiiarov V, Syrtanov M, Bordulev YS, Babikhina M, Lider A, Gubin V, Murashkina T (2017) The hydrogen sorption and desorption behavior in spherical powder of pure titanium used for additive manufacturing. Int J Hydrog Energy 42:15283–15289

    Article  CAS  Google Scholar 

  9. Tanaka S, Abe Y, Kawabe M, Kutsukake C, Oginuma Y, Yamada M, Suzuki T, Yamanishi T, Konno C (2010) Prototype manufacturing of small tritium target inside JAEA. J Plasma Fusion Res Series 9:338–341

    Google Scholar 

  10. Alejandra LS (2017) Effect of absorption and desorption of hydrogen in Ti and Ti Alloys. In: Maryam Takht R (ed) New advances in hydrogenation processes. IntechOpen, Rijeka

    Google Scholar 

  11. Gillan M (1988) The quantum simulation of hydrogen in metals. Philos Mag A 58:257–283

    Article  CAS  Google Scholar 

  12. Myers SM, Baskes MI, Birnbaum HK, Corbett JW, DeLeo GG, Estreicher SK, Haller EE, Jena P, Johnson NM, Kirchheim R, Pearton SJ, Stavola MJ (1992) Hydrogen interactions with defects in crystalline solids. Rev Mod Phys 64:559–617. https://doi.org/10.1103/RevModPhys.64.559

    Article  CAS  Google Scholar 

  13. Sholl DS (2007) Using density functional theory to study hydrogen diffusion in metals: a brief overview. J Alloys Compd 446:462–468. https://doi.org/10.1016/j.jallcom.2006.10.136

    Article  CAS  Google Scholar 

  14. Sun L, Xiao W, Huang S, Wang J, Wang L (2018) Improving the mechanical processing of titanium by hydrogen doping: a first-principles study. Int J Hydrog Energy 43:6756–6764. https://doi.org/10.1016/j.ijhydene.2018.02.066

    Article  CAS  Google Scholar 

  15. Shelyapina MG, Vyvodtceva AV, Klyukin KA, Bavrina OO, Chernyshev YS, Privalov AF, Fruchart D (2015) Hydrogen diffusion in metal-hydrogen systems via NMR and DFT. Int J Hydrog Energy 40:17038–17050. https://doi.org/10.1016/j.ijhydene.2015.05.176

    Article  CAS  Google Scholar 

  16. Liang CP, Gong HR (2010) Fundamental influence of hydrogen on various properties of alpha-titanium. Int J Hydrog Energy 35:3812–3816. https://doi.org/10.1016/j.ijhydene.2010.01.080

    Article  CAS  Google Scholar 

  17. Han XL, Wang Q, Sun DL, Sun T, Guo Q (2009) First-principles study of hydrogen diffusion in alpha Ti. Int J Hydrog Energy 34:3983–3987. https://doi.org/10.1016/j.ijhydene.2009.02.061

    Article  CAS  Google Scholar 

  18. Connetable D, Huez J, Andrieu E, Mijoule C (2011) First-principles study of diffusion and interactions of vacancies and hydrogen in hcp-titanium. J Phys Condens Matter 23:405401. https://doi.org/10.1088/0953-8984/23/40/405401

    Article  CAS  PubMed  Google Scholar 

  19. Nayak SK, Hung CJ, Sharma V, Alpay SP, Dongare AM, Brindley WJ, Hebert RJ (2018) Insight into point defects and impurities in titanium from first principles. npj Comput Mater 4:1–10

    Article  Google Scholar 

  20. Zuliani F, Bernasconi L, Baerends EJ (2012) Titanium as a potential addition for high-capacity hydrogen storage medium. J Nanotechnol. https://doi.org/10.1155/2012/831872

    Article  Google Scholar 

  21. Tunde Raji A, Scandolo S, Mazzarello R, Nsengiyumva S, Härting M, Thomas Britton D (2009) Ab initio pseudopotential study of vacancies and self-interstitials in hcp titanium. Philos Mag 89:1629–1645

    Article  Google Scholar 

  22. Hruška P, Čížek J, Knapp J, Lukáč F, Melikhova O, Mašková S, Havela L, Drahokoupil J (2017) Characterization of defects in titanium created by hydrogen charging. Int J Hydrog Energy 42:22557–22563

    Article  Google Scholar 

  23. Kang M-H, Wilkins JW (1990) HH interaction in Ti lattice: pseudopotential density-functional total-energy approach. Phys Rev B 41:10182

    Article  CAS  Google Scholar 

  24. Xu Q, Van der Ven A (2007) First-principles investigation of metal-hydride phase stability: The Ti-H system. Phys Rev B 76:064207. https://doi.org/10.1103/PhysRevB.76.064207

    Article  CAS  Google Scholar 

  25. Yang R, Wang Y, Zhao Y, Wang L, Ye H, Wang C (2002) Transition metal alloying effects on chemical bonding in TiH2. Acta Mater 50:109–120

    Article  CAS  Google Scholar 

  26. Chaudhuri S, Graetz J, Ignatov A, Reilly JJ, Muckerman JT (2006) Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach. J Am Chem Soc 128:11404–11415

    Article  CAS  PubMed  Google Scholar 

  27. Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski K (2013) Influence of C, H, N, and O interstitial atoms on deformation mechanism in titanium—first principles calculations of generalized stacking fault energy. Mater Lett 94:92–94

    Article  CAS  Google Scholar 

  28. Liang L, Duparc OBMH (2016) First-principles study of four mechanical twins and their deformation along the c-axis in pure alpha-titanium and in titanium in presence of oxygen and hydrogen. Acta Mater 110:258–267. https://doi.org/10.1016/j.actamat.2016.03.014

    Article  CAS  Google Scholar 

  29. Poletaev D, Aksyonov D, Vo DD, Lipnitskii A (2016) Hydrogen solubility in hcp titanium with the account of vacancy complexes and hydrides: a DFT study. Comput Mater Sci 114:199–208

    Article  CAS  Google Scholar 

  30. Liang C, Gong H (2013) Atomic structure, mechanical quality, and thermodynamic property of TiH x phases. J Appl Phys 114:043510

    Article  Google Scholar 

  31. Kuksin AY, Rokhmanenkov A, Stegailov V (2013) Atomic positions and diffusion paths of h and he in the α-Ti lattice. Phys Solid State 55:367–372

    Article  CAS  Google Scholar 

  32. Han X, Wang Q, Sun D, Zhang H (2007) First-principles study of the effect of hydrogen on the Ti self-diffusion characteristics in the alpha Ti–H system. Scripta Mater 56:77–80

    Article  CAS  Google Scholar 

  33. Colakoglu K, Ciftci YÖ (2000) The lattice dynamics of bcc titanium. Turk J Phys 24:123–128

    CAS  Google Scholar 

  34. Sangiovanni D, Klarbring J, Smirnova D, Skripnyak N, Gambino D, Mrovec M, Simak S, Abrikosov I (2019) Superioniclike diffusion in an elemental crystal: bcc titanium. Phys Rev Lett 123:105501

    Article  CAS  PubMed  Google Scholar 

  35. Zhao G-H, Liang X, Kim B, Rivera-Díaz-del-Castillo P (2019) Modelling strengthening mechanisms in beta-type Ti alloys. Mater Sci Eng A 756:156–160

    Article  CAS  Google Scholar 

  36. Boda A, Ali SM, Shenoy KT, Mohan S (2019) Adsorption, absorption, diffusion, and permeation of hydrogen and its isotopes in bcc bulk Fe and Fe(100) surface: plane wave-based density functional theoretical investigations. J Phys Chem C 123:23951–23966. https://doi.org/10.1021/acs.jpcc.9b05327

    Article  CAS  Google Scholar 

  37. Boda A, Bajania S, Ali SM, Shenoy KT, Mohan S (2021) Chemisorption, diffusion and permeation of hydrogen isotopes in bcc bulk cr and cr(100) surface: first-principles dft simulations. J Nucl Mater 543:152538. https://doi.org/10.1016/j.jnucmat.2020.152538

    Article  CAS  Google Scholar 

  38. Boda A, Sk MA, Shenoy KT, Mohan S (2020) Diffusion, permeation and solubility of hydrogen, deuterium and tritium in crystalline tungsten: first principles DFT simulations. Int J Hydrog Energy 45:29095–29109. https://doi.org/10.1016/j.ijhydene.2020.07.275

    Article  CAS  Google Scholar 

  39. Boda A, Singha Deb AK, Ali SM, Shenoy KT (2022) Density functional theoretical analysis of micro-adsorption of isotopes of hydrogen molecule and atom by uranium. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2022.04.049

    Article  Google Scholar 

  40. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  41. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1998) Perdew, Burke, and Ernzerhof reply. Phys Rev Lett 80:891. https://doi.org/10.1103/PhysRevLett.80.891

    Article  CAS  Google Scholar 

  44. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687. https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  45. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  CAS  Google Scholar 

  46. Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  47. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  48. Bakulin AV, Spiridonova TI, Kulkova SE, Hocker S, Schmauder S (2016) Hydrogen diffusion in doped and undoped α-Ti: an ab-initio investigation. Int J Hydrog Energy 41:9108–9116. https://doi.org/10.1016/j.ijhydene.2016.03.192

    Article  CAS  Google Scholar 

  49. Ramasubramaniam A, Itakura M, Carter EA (2009) Interatomic potentials for hydrogen in $\ensuremath{\alpha}$–iron based on density functional theory. Phys Rev B 79:174101. https://doi.org/10.1103/PhysRevB.79.174101

    Article  CAS  Google Scholar 

  50. Jansson H, Mills G, Jacobsen KW (1998). World Scientific, Singapore

  51. QuantumATK Version (2019) O-201903, Synopsys Quantum ATK. https://www.synopsys.com/silicon/quantumatk.html

  52. Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee M-E, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter 32:015901. https://doi.org/10.1088/1361-648x/ab4007

    Article  CAS  PubMed  Google Scholar 

  53. Smidstrup S, Stradi D, Wellendorff J, Khomyakov PA, Vej-Hansen UG, Lee M-E, Ghosh T, Jónsson E, Jónsson H, Stokbro K (2017) First-principles Green’s-function method for surface calculations: a pseudopotential localized basis set approach. Phys Rev B 96:195309

    Article  Google Scholar 

  54. Blackburn M, Jaffee R, Promisel N (1970) The science, technology and application of titanium. In: Jaffee RI, Promisel N (eds) The science, technology and application of titanium. Pergamon Press, Oxford, p 633

    Chapter  Google Scholar 

  55. Petry W, Heiming A, Trampenau J, Alba M, Herzig C, Schober H, Vogl G (1991) Phonon dispersion of the bcc phase of group-IV metals. I bcc titanium. Phys Rev B 43:10933

    Article  CAS  Google Scholar 

  56. Ogi H, Kai S, Ledbetter H, Tarumi R, Hirao M, Takashima K (2004) Titanium’s high-temperature elastic constants through the hcp–bcc phase transformation. Acta Mater 52:2075–2080

    Article  CAS  Google Scholar 

  57. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  58. Hafner R, Spišák D, Lorenz R, Hafner J (2002) Magnetic ground state of Cr in density-functional theory. Phys Rev B 65:184432

    Article  Google Scholar 

  59. Janthon P, Luo S, Kozlov SM, Vines F, Limtrakul J, Truhlar DG, Illas F (2014) Bulk properties of transition metals: a challenge for the design of universal density functionals. J Chem Theory Comput 10:3832–3839

    Article  CAS  PubMed  Google Scholar 

  60. Ledbetter H, Ogi H, Kai S, Kim S, Hirao M (2004) Elastic constants of body-centered-cubic titanium monocrystals. J Appl Phys 95:4642–4644

    Article  CAS  Google Scholar 

  61. Nishitani SR, Kawabe H, Aoki M (2001) First-principles calculations on bcc–hcp transition of titanium. Mater Sci Eng, A 312:77–83

    Article  Google Scholar 

  62. Sanati M, Saxena A, Lookman T, Albers R (2001) Landau free energy for a bcc-hcp reconstructive phase transformation. Phys Rev B 63:224114

    Article  Google Scholar 

  63. Stoicheff B (1957) High resolution Raman spectroscopy of gases: IX. Spectra of H2, HD, and D2. Can J Phys 35:730–741

    Article  CAS  Google Scholar 

  64. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36:389–397

    Article  CAS  Google Scholar 

  65. Sprecher D, Jungen C, Ubachs W, Merkt F (2011) Towards measuring the ionisation and dissociation energies of molecular hydrogen with sub-MHz accuracy. Faraday Discuss 150:51–70

    Article  CAS  PubMed  Google Scholar 

  66. Wert C, Zener C (1949) Interstitial atomic diffusion coefficients. Phys Rev 76:1169

    Article  CAS  Google Scholar 

  67. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  68. Eyring H (1938) The theory of absolute reaction rates. Trans Faraday Soc 34:41–48

    Article  CAS  Google Scholar 

  69. Wigner E (1932) Concerning the excess of potential barriers in chemical reactions. Z Phys Chem B Chem E 19:203–216

    Article  Google Scholar 

  70. Wigner E (1938) The transition state method. Trans Faraday Soc 34:29–41

    Article  CAS  Google Scholar 

  71. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127

    Article  CAS  Google Scholar 

  72. Hirschfelder J, Wigner E (1997) Some quantum-mechanical considerations in the theory of reactions involving an activation energy. In: Wightman AS (ed) Part I: physical chemistry part ii: solid state physics. Springer, pp 176–188

    Google Scholar 

  73. Fermann JT, Auerbach S (2000) Modeling proton mobility in acidic zeolite clusters: II. Room temperature tunneling effects from semiclassical rate theory. J Chem Phys 112:6787–6794. https://doi.org/10.1063/1.481318

    Article  CAS  Google Scholar 

  74. Heinola K, Ahlgren T (2010) Diffusion of hydrogen in bcc tungsten studied with first principle calculations. J Appl Phys 107:113531. https://doi.org/10.1063/1.3386515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The computer division of BARC is acknowledged for making ANUPAM Supercomputing facility available to us. Dr. S. Mukhopadhyay, Head, ChED and Shri K.T. Shenoy, Director, ChEG are gratefully acknowledged for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

Sk. Musharaf Ali designed the research; Anil Boda performed the simulations and data analysis and initial manuscript preparation; Sk. Musharaf Ali edited the final manuscript. Nirbhay Chandorkar contributed code implementation in supercomputing facility; All authors contributed to editing the manuscript, and approve of the content in its current form.

Corresponding author

Correspondence to Sk. Musharaf Ali.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boda, A., Chandorkar, N. & Ali, S.M. Density functional theoretical assessment of titanium metal for adsorption of hydrogen, deuterium and tritium isotopes. Theor Chem Acc 142, 46 (2023). https://doi.org/10.1007/s00214-023-02988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02988-9

Keywords

Navigation