Skip to main content
Log in

Mechanistic studies on stereoselective domino [4 + 2]/retro[3 + 2]/[3 + 2] cycloaddition reactions of oxadiazoles with strained and unstrained cycloalkenes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work reports a systematic mechanistic study on the domino cycloaddition reaction of symmetric and asymmetric 1,3,4 oxadiazoles OD and substituted variants with strained and unstrained cycloalkenes. The investigations were carried out using hybrid density functionals M06-2X, B3LYP and MPWB1K in conjunction with split valence triple zeta basis set 6-311++G(d,p). The domino cycloaddition reaction stereoselectively leads to the formation of either the cis or trans polycyclic domino adduct with fascinating synthetic features owing to the ubiquity of these structures in a broad range of natural products and pharmaceuticals. The cycloaddition reactions proceed through a rate-determining [4 + 2] cycloaddition between the OD and cycloalkene to form an isolable adduct (although not necessary to isolate the intermediates in domino cycloadditions). The Diels–Alder adduct easily undergo extrusion of nitrogen gas, N2 (retro [3 + 2]) to form a highly unstable carbonyl ylide. The pseudodiradical TAC (carbonyl ylide) undergoes a rapid [3 + 2] cycloaddition reaction with a cycloalkene to furnish the domino polycyclic adduct. The results reported herein are in excellent agreement with previous experimental works and provide further insights for future experiments. The domino cycloaddition reaction is stereoselective toward the cis isomer when highly strained unsaturated bicyclic alkene (norbornene) reacts with the asymmetric OD and stereoselective toward trans-isomer when unstrained cycloalkenes with less (angle) strain react with the asymmetric OD. Cyclooctene is found to participate in the domino process with its cis conformer which was hitherto unknown. Global electron density transfer (GEDT) analysis reveals the polar nature of the domino scheme of reactions. Overall, the feasibility of these domino cycloaddition reactions depends on the polar nature of the first [4 + 2] cycloaddition reactions, which depends on the electrophilic and nucleophilic character of the participating reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data supporting this publication are included in the article and the electronic supporting information.

References

  1. Engler TA, Scheibe CM, Iyengar R (1997) Tandem 5 + 2/3 + 2 and 5 + 2/3 + 3 cycloaddition reactions. J Org Chem 62:8274–8275. https://doi.org/10.1021/jo971601k

    Article  CAS  PubMed  Google Scholar 

  2. Winkler JD, Kim HS, Kim S (1995) A highly efficient synthesis of taxanes via the tandem Diels–Alder reaction. Tetrahedron Lett 36:687–690. https://doi.org/10.1016/0040-4039(94)02353-D

    Article  CAS  Google Scholar 

  3. Rodríguez JR, Rumbo A, Castedo L, Mascareñas JL (1999) Straightforward construction of fused 6,7,5-tricarbocyclic systems by tandem [5 + 2]/[4 + 2] cycloadditions. J Org Chem 64:966–970. https://doi.org/10.1021/jo982050g

    Article  Google Scholar 

  4. Denmark SE, Seierstad M, Herbert B (1999) Tandem cycloaddition chemistry of nitroalkenes: preparative and theoretical studies on the stereochemical course of [3 + 2] cycloaddition of cyclic nitronates. J Org Chem 64:884–901. https://doi.org/10.1021/jo9818374

    Article  CAS  PubMed  Google Scholar 

  5. Denmark SE, Baiazitov RY, SED, Baiazitov RY, (2006) Tandem double-intramolecular [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. Studies toward a total synthesis of daphnilactone B: piperidine ring construction. J Org Chem 71:593–605. https://doi.org/10.1021/jo052001l

    Article  CAS  PubMed  Google Scholar 

  6. Donkor B, Opoku E (2020) Formation of steroid-type skeletons: an ubiquitous natural product. Adv J Chem Sect B. https://doi.org/10.22034/ajcb.2020.113671

  7. Donkor B, Opoku E, Aniagyei A (2022) Theoretical studies on cycloaddition reactions of N-allyl substituted polycyclic isoindole-1,3-dione with nitrones and nitrile oxides. Comput Theor Chem 1208:113574. https://doi.org/10.1016/j.comptc.2021.113574

    Article  CAS  Google Scholar 

  8. Domingo L (2005) Theoretical studies on domino cycloaddition reactions. Mini Rev Org Chem 2:47–57. https://doi.org/10.2174/1570193052774063

    Article  CAS  Google Scholar 

  9. Nishiwaki N (2014) Methods and applications of cycloaddition reactions in organic syntheses. Methods Appl Cycloaddit React Org Synth 9781118299:1–659. https://doi.org/10.1002/9781118778173

    Article  Google Scholar 

  10. Margeti DA, Tro PA, Johnston MRB (2011) Tandem [4 + 2]/[3 + 2] cycloaddtions of 1,3,4-oxadiazoles with Alkenes. Mini Rev Org Chem 8:49–65. https://doi.org/10.2174/157019311793979981

  11. Tsuge O, Kanemasa S (1989) Recent advances in azomethine ylide chemistry. Adv Heterocycl Chem 45:231–349. https://doi.org/10.1016/S0065-2725(08)60332-3

    Article  CAS  Google Scholar 

  12. Perreault S, Rovis T (2009) Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets. Chem Soc Rev 38:3149–3159. https://doi.org/10.1039/b816702h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denmark SE, Thorarensen A (1996) Tandem [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. Chem Rev 96:137–166. https://doi.org/10.1021/cr940277f

    Article  CAS  PubMed  Google Scholar 

  14. Thalhammer F, Wallfahrer U, Sauer J (1988) 1,3,4-Oxadiazole als heteroctglische 4π-komponenten in diels-alder-reaktionen. Tetrahedron Lett 29:3231–3234. https://doi.org/10.1016/0040-4039(88)85129-3

    Article  CAS  Google Scholar 

  15. Vasil N V, Romanov D V, Bazhenov AA, et al (2007) Intramolecular cycloaddition of fluorinated 1,3,4-oxadiazoles to dienes. 128:740–747. https://doi.org/10.1016/j.jfluchem.2007.02.020

  16. Sears JE, Boger DL (2016) Tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition cascade of 1,3,4-oxadiazoles: initial scope and applications. Acc Chem Res 49:241–251. https://doi.org/10.1021/acs.accounts.5b00510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Opoku E, Baffour Pipim G, Tia R, Adei E (2020) Mechanistic study of the tandem intramolecular (4 + 2)/intermolecular (3 + 2) cycloaddition reactions for the formation of polyaza- and polyisoxazolidine-steroids. J Heterocycl Chem 57:1748–1758. https://doi.org/10.1002/jhet.3900

    Article  CAS  Google Scholar 

  18. Opoku E, Tia R, Adei E (2019) Computational studies on [4 + 2]/[3 + 2] tandem sequential cycloaddition reactions of functionalized acetylenes with cyclopentadiene and diazoalkane for the formation of norbornene pyrazolines. J Mol Model 25:168. https://doi.org/10.1007/s00894-019-4056-x

    Article  PubMed  Google Scholar 

  19. Opoku E, Tia R, Adei E (2019) DFT mechanistic study on tandem sequential [4 + 2]/[3 + 2] addition reaction of cyclooctatetraene with functionalized acetylenes and nitrile imines. J Phys Org Chem 32:e3992. https://doi.org/10.1002/poc.3992

    Article  CAS  Google Scholar 

  20. Roland D, Haleegoah JN, Opoku E et al (2019) Mechanistic studies on tandem cascade [4 + 2]/[3 + 2] cycloaddition of 1,3,4-oxadiazoles with olefins. J Mol Graph Model 93:2–11. https://doi.org/10.1016/j.jmgm.2019.107452

    Article  CAS  Google Scholar 

  21. Seitz G, Gerninghaus C (1994) Cycloadditionen mit 1,3,4-oxadiazolen. Pharmazie 49:102–106

    CAS  Google Scholar 

  22. Wilkie GD, Elliott GI, Blagg BSJ et al (2002) Intramolecular Diels–Alder and tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reactions of 1,3,4-oxadiazoles. J Am Chem Soc 124:11292–11294. https://doi.org/10.1021/ja027533n

    Article  CAS  PubMed  Google Scholar 

  23. Sears JE, Barker TJ, Boger DL (2015) Total synthesis of (−)-Vindoline and (+)-4- epi-vindoline based on a 1,3,4-oxadiazole tandem intramolecular [4 + 2]/[3 + 2] cycloaddition cascade initiated by an allene dienophile. Org Lett 17:5460–5463. https://doi.org/10.1021/acs.orglett.5b02818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell EL, Skepper CK, Sankar K, et al (2013) LETTERS Transannular Diels–Alder/1,3-dipolar oxadiazoles: total synthesis of a unique set of vinblastine analogues. https://doi.org/10.1021/ml400281w

  25. Domingo LR (2014) A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428. https://doi.org/10.1039/c4ra04280h

    Article  CAS  Google Scholar 

  26. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark M, Cramer RD, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012. https://doi.org/10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  28. Akuamoah DA, Opoku E, Tia R, Adei E (2020) 1,3-Dipolar cycloaddition reaction of indoles with tosyl azide, subsequent dehydroaromatization and ring-opening cascade: a computational study. Theor Chem Acc 139:1–16. https://doi.org/10.1007/s00214-020-02653-5

    Article  CAS  Google Scholar 

  29. Pipim GB, Opoku E (2021) Unveiling the molecular mechanisms of the cycloaddition reactions of aryl hetaryl thioketones and C, N-disubstituted nitrilimines. J Mol Model 27:84. https://doi.org/10.1007/s00894-021-04706-3

    Article  CAS  PubMed  Google Scholar 

  30. Opoku E, Arhin G, Pipim GB et al (2020) Site-, enantio- and stereo-selectivities of the 1,3-dipolar cycloaddition reactions of oxanorbornadiene with C,N-disubstituted nitrones and dimethyl nitrilimines: a DFT mechanistic study. Theor Chem Acc 139:16. https://doi.org/10.1007/s00214-019-2529-8

    Article  CAS  Google Scholar 

  31. Opoku E, Tia R, Adei E (2019) Quantum chemical studies on the mechanistic aspects of tandem sequential cycloaddition reactions of cyclooctatetraene with ester and nitrones. J Mol Graph Model 92:17–31. https://doi.org/10.1016/j.jmgm.2019.06.019

    Article  CAS  PubMed  Google Scholar 

  32. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  33. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor–corrector integrator. J Chem Phys 120:9918–9924. https://doi.org/10.1063/1.1724823

    Article  CAS  PubMed  Google Scholar 

  34. Hratchian HP, Schlegel HB (2005) Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61–69. https://doi.org/10.1021/ct0499783

    Article  CAS  PubMed  Google Scholar 

  35. Arhin G, Adams AH, Opoku E et al (2019) 1, 3-Dipolar cycloaddition reactions of selected 1,3-dipoles with 7-isopropylidenenorbornadiene and follow-up thermolytic cleavage: a computational study. J Mol Graph Model 92:267–279. https://doi.org/10.1016/j.jmgm.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  36. Opoku E, Tia R, Adei E (2016) [3 + 2] versus [2 + 2] Addition: a density functional theory study on the mechanistic aspects of transition metal-assisted formation of 1,2-dinitrosoalkanes. J Chem. https://doi.org/10.1155/2016/4538696

  37. Borketey JB, Opoku E, Tia R, Adei E (2020) The mechanisms of gallium-catalysed skeletal rearrangement of 1,6-enynes—insights from quantum mechanical computations. J Mol Graph Model 94:107476. https://doi.org/10.1016/j.jmgm.2019.107476

    Article  CAS  PubMed  Google Scholar 

  38. Umar AR, Tia R, Adei E (2021) The 1,3-dipolar cycloaddition of adamantine-derived nitrones with maleimides: a computational study. Comput Theor Chem 1195:113099. https://doi.org/10.1016/j.comptc.2020.113099

    Article  CAS  Google Scholar 

  39. Legault CY (2009) C. Y. CYLview

  40. Frisch MJ, Trucks GW, Schlegel HB, et al (2016) G16_B01. Gaussian 16, Revision B.01, Gaussian, Inc., Wallin

  41. Ríos-Gutiérrez M, Domingo LR (2019) Unravelling the mysteries of the [3 + 2] cycloaddition reactions. Eur J Org Chem 2019:267–282

    Article  Google Scholar 

  42. Domingo LR, Sáez JA (2009) Understanding the mechanism of polar Diels–Alder reactions. Org Biomol Chem 7:3576–3583. https://doi.org/10.1039/B909611F

    Article  CAS  PubMed  Google Scholar 

  43. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58:4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  44. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct THEOCHEM 865:68–72. https://doi.org/10.1016/j.theochem.2008.06.022

    Article  CAS  Google Scholar 

  45. Parr RG, Szentpály L (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  46. Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  47. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  48. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  49. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  50. Ranck JP (2001) Modern physical chemistry: a molecular approach. J Chem Educ 78:1024. https://doi.org/10.1021/ed078p1024

    Article  CAS  Google Scholar 

  51. Domingo LR, Sáez JA (2011) Understanding the electronic reorganization along the nonpolar [3 + 2] cycloaddition reactions of carbonyl ylides. J Org Chem 76:373–379. https://doi.org/10.1021/JO101367V/SUPPL_FILE/JO101367V_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  52. Neuenschwander U, Hermans I (2011) The conformations of cyclooctene: consequences for epoxidation chemistry. J Org Chem 76:10236–10240. https://doi.org/10.1021/JO202176J

    Article  CAS  PubMed  Google Scholar 

  53. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21:1–15. https://doi.org/10.3390/molecules21101319

    Article  CAS  Google Scholar 

  54. Domingo LR, Ríos-Gutiérrez M (2017) A molecular electron density theory study of the reactivity of azomethine imine in [3 + 2] cycloaddition reactions. Molecules. https://doi.org/10.3390/molecules22050750

    Article  PubMed  PubMed Central  Google Scholar 

  55. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21

  56. Domingo LR, Ríos-Gutiérrez M, Pérez P (2017) How does the global electron density transfer diminish activation energies in polar cycloaddition reactions? A molecular electron density theory study. Tetrahedron 73:1718–1724. https://doi.org/10.1016/j.tet.2017.02.012

    Article  CAS  Google Scholar 

  57. Domingo LR, Ríos-Gutiérrez M, Pérez P (2018) A molecular electron density theory study of the competitiveness of polar Diels–Alder and polar Alder–Ene reactions. Molecules. https://doi.org/10.3390/molecules23081913

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was made possible by a grant of high-performance computing and computational resources from the South Africa’s Centre for High-Performance Computing.

Funding

This work was supported by Nesvard Africa Science Project via Grant No. NASP-78902022-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Opoku.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A.R., Opoku, E. Mechanistic studies on stereoselective domino [4 + 2]/retro[3 + 2]/[3 + 2] cycloaddition reactions of oxadiazoles with strained and unstrained cycloalkenes. Theor Chem Acc 141, 9 (2022). https://doi.org/10.1007/s00214-022-02872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02872-y

Keywords

Navigation