Skip to main content
Log in

A molecular dynamics study of the evolution from the formation of the \({\text {C}}_{6}{\text {F}}_{6}\)–(\({\text {H}}_{2}{\text {O}})_{n}\) small aggregates to the \({\text {C}}_{6}{\text {F}}_{6}\) solvation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interaction between hexafluorobenzene, \({\text {C}}_{6}{\text {F}}_{6}\), and \({\text {H}}_{2}\)O is investigated to construct a force field for molecular dynamics simulations. In order to construct the \({\text {C}}_{6}{\text {F}}_{6}\)\({\text {H}}_{2}\)O intermolecular interaction function, the nonpermanent charge contributions, grouped in the so-called nonelectrostatic term and described using an improved Lennard-Jones model, are combined with the electrostatic energy calculated in agreement with the permanent electric quadrupole and dipole moments of \({\text {C}}_{6}{\text {F}}_{6}\) and \({\text {H}}_{2}\)O, respectively. Moreover, to test the potential energy function, BSSE-corrected energies at CCSD(T)/aug-cc-pVTZ level are calculated for three different approaches of \({\text {H}}_{2}{\text {O}}\)\({\text {C}}_{6}{\text {F}}_{6}\). By using the constructed force field, the structure and energetics of some small aggregates [\({\text {C}}_{6}{\text {F}}_{6}\)–(\({\text {H}}_{2}{\text {O}})_{n}\) (\(n= 1{\text {--}}6\))], the formation of the first solvation shell [\({\text {C}}_{6}{\text {F}}_{6}\)–(\({\text {H}}_{2}{\text {O}})_{n}\) (\(n = 9{\text {--}}36\))] and the solvation of \({\text {C}}_{6}{\text {F}}_{6}\) by 400 molecules of \({\text {H}}_{2}\)O have been investigated. The \({\text {C}}_{6}{\text {F}}_{6}\)–(\({\text {H}}_{2}{\text {O}})_{n}\) (\(n= 1{\text {--}}6\)) small aggregates and the formation of the first solvation shell have been simulated using a microcanonical (NVE) ensemble of particles, while an isobaric–isothermal ensemble (NpT) has been used to investigate the solvation of \({\text {C}}_{6}{\text {F}}_{6}\). Moreover, in order to approximate the system formed by one \({\text {C}}_{6}{\text {F}}_{6}\) and 400 \({\text {H}}_{2}\)O molecules to a large (infinite) system, periodic boundary conditions have been imposed in the simulation of the solvation of \({\text {C}}_{6}{\text {F}}_{6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsuzuki S, Fujii A (2008) Nature and physical origin of CH/\(\pi\) interaction: significant difference from conventional hydrogen bonds. Phys Chem Chem Phys 10:2584–2594

    Article  CAS  Google Scholar 

  2. Buckingham AD, Fowler P, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88:963–988

    Article  CAS  Google Scholar 

  3. Chalasinski G, Szczesniak MM (2000) State of the ab Initio theory of intermolecular interactions. Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  4. Meyer EA, Castellano RK, Diederich F (2003) An efficient algorithm for the density-functional theory treatment of dispersion interactions. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  5. Müller-Dethfels K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Article  Google Scholar 

  6. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular clusters of \(\pi\)-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100:4145–4185

    Article  CAS  Google Scholar 

  7. Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3:289–300

    Article  CAS  Google Scholar 

  8. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for Noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  Google Scholar 

  9. Hobza P (2012) Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc Chem Res 45:663–672

    Article  CAS  Google Scholar 

  10. Maitland GC, Rigby M, Smith EB, Wakeham WA (1987) Intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  11. Stone AJ (1996) The theory of internuclear forces. Clarendon Press, Oxford

    Google Scholar 

  12. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2004) Cation-\(\pi\) versus anion-\(\pi\) interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    Article  CAS  Google Scholar 

  13. Hirshfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  14. Battaglia MR, Buckingham AD, Williams JH (1981) The Electric Quadrupole Moments of Benzene and Hexafluorobenzene. Chem Phys Lett 78:421–423

    Article  CAS  Google Scholar 

  15. Quiñonero D, Garau C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Counterintuitive interaction of anions with benzene derivatives. Chem Phys Lett 359:486–492

    Article  Google Scholar 

  16. Alkorta I, Rozas I, Elguero J (1997) An attractive interaction between the \(\pi\)-cloud of C\(_{6}\)F\(_{6}\) and electron-donor atoms. J Org Chem 62:4687–4691

    Article  CAS  Google Scholar 

  17. Read WG, Campbell EJ, Henderson G (1983) The rotational spectrum and molecular structure of the benzene–hydrogen chloride complex. J Chem Phys 78:3501–3508

    Article  CAS  Google Scholar 

  18. Baiocchi FA, Williams JH, Klemperer W (1983) Molecular beam studies of hexafluorobenzene, trifluorobenzene, and benzene complexes of hydrogen fluoride. The rotational spectrum of benzene-hydrogen fluoride. J Phys Chem 87:2079–2084

    Article  CAS  Google Scholar 

  19. Suzuki S, Green PG, Bumgarner RF, Dasgupta S, Goddard WA III, Blake GA (1992) Benzene forms hydrogen bonds with water. Science 257:942–945

    Article  CAS  Google Scholar 

  20. Rodham DA, Suzuki S, Suenram RD, Lovas FJ, Dasgupta S, Goddard WA III, Blake GA (1993) Hydrogen bonding in the benzene–ammonia dimer. Nature 362:735–736

    Article  CAS  Google Scholar 

  21. Jain A, Ramanathan V, Sankararamakrishnan R (2009) Lone pair \(\dots\) \(\pi\) interactions between water oxygen and aromatic residues: quantum chemical studies based on high-resolution protein structures and model compounds. Protein Sci 18:595–605

    CAS  Google Scholar 

  22. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  23. Mas EM, Szalewicz K, Bukowski R, Jeziorski B (1997) Pair potential for water from symmetry-adapted perturbation theory. J Chem Phys 107:4207–4218

    Article  CAS  Google Scholar 

  24. Bukowski R, Sadlej J, Jeziorski B, Jankowsky P, Szalewicz K, Kucharski SA, Williams HL, Rice BM (1999) Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory. J Chem Phys 110:3785–3803

    Article  CAS  Google Scholar 

  25. Misquitta AJ, Szalewicz K (2002) Intermolecular forces from asymptotically corrected density functional description of monomers. Chem Phys Lett 357:301–306

    Article  CAS  Google Scholar 

  26. Misquitta AJ, Jeziorski B, Szalewicz K (2003) Dispersion energy from density-functional theory description of monomers. Phys Rev Lett 91:033201(1)–033201(4)

    Article  Google Scholar 

  27. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) Origin of the attraction and directionality of the NH/\(\pi\) interaction: comparison with OH/\(\pi\) and CH/\(\pi\) interactions. J Am Chem Soc 122:11450–11458

    Article  CAS  Google Scholar 

  28. Shibasaki K, Fujii A, Mikami N, Tsuzuki S (2006) Magnitude of the CH/\(\pi\) interaction in the gas phase: experimental and theoretical determination of the accurate interaction energy in benzene-methane. J Phys Chem A 110:4397–4404

    Article  CAS  Google Scholar 

  29. Shibasaki K, Fujii A, Mikami N, Tsuzuki S (2007) Magnitude and nature of interactions in benzene-X (X \(=\) ethylene and acetylene) in the gas phase: significantly different CH/\(\pi\) interaction of acetylene as compared with those of ethylene and methane. J Phys Chem A 111:753–758

    Article  CAS  Google Scholar 

  30. Fujii A, Shibasaki K, Kazama T, Itaya R, Mikami N, Tsuzuki S (2008) Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/\(\pi\) interaction of haloalkanes. Phys Chem Chem Phys 10:2836–2843

    Article  CAS  Google Scholar 

  31. Ma J, Alfè D, Michaelides A, Wang E (2009) The water-benzene interaction: insight from electronic structure theories. J Chem Phys 130:154303(1)–154303(6)

    Article  Google Scholar 

  32. Brutschy B (1992) Ion-molecule reactions within molecular clusters. Chem Rev 92:1567–1587

    Article  CAS  Google Scholar 

  33. Brutschy B (2000) The structure of microsolvated benzene derivatives and the role of aromatic substituents. Chem Rev 100:3891–3920

    Article  CAS  Google Scholar 

  34. Vaupel S, Brutschy B, Tarakeshwar P, Kim KS (2006) Characterization of weak NH-\(\pi\) intermolecular interactions of ammonia with various substituted systems. J Am Chem Soc 128:5416–5426

    Article  CAS  Google Scholar 

  35. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys Chem Chem Phys 10:5489–5503

    Article  CAS  Google Scholar 

  36. Faginas Lago N, Huarte-Larrañaga F, Albertí M (2009) On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur Phys J D 55:75–85

    Article  Google Scholar 

  37. Pirani F, Albertí M, Castro A, Moix M, Cappelletti D (2004) Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem Phys Lett 394:37–44

    Article  CAS  Google Scholar 

  38. Albertí M, Pirani F (2011) Features of Ar solvation shells in neutral and ionic clustering: the competitive role of two-body and many-body interactions. J Phys Chem A 115:6394–6404

    Article  Google Scholar 

  39. Albertí M, Aguilar A, Lucas JM, Pirani F, Cappelletti D, Coletti C, Re N (2006) Atom-bond pairwise additive representation for cation-benzene potential energy surfaces: an ab initio validation study. J Phys Chem A 110:9002–9010

    Article  Google Scholar 

  40. Albertí M, Aguilar A, Lucas JM, Pirani F, Coletti C, Re N (2009) Atom-bond pairwise additive representation for halide-benzene potential energy surfaces: an ab initio validation study. J Phys Chem A 113:14606–14614

    Article  Google Scholar 

  41. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  42. Kitaura K, Morokuma K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of electrostatic potentials. Plenum Press, New York

  43. Chen W, Gordon MS (1996) Energy decomposition analyses for many-body interaction and applications to water complexes. J Phys Chem 100:14316–14328

    Article  CAS  Google Scholar 

  44. Albertí M, Aguilar A, Cappelletti D, Laganà A, Pirani F (2009) On the development of an effective model potential to describe water interaction in neutral and ionic clusters. Int J Mass Spectrom 280:50–56

    Article  Google Scholar 

  45. Bukowski R, Cencek W, Jankowski P, Jeziorska M, Jeziorski B, Lotrich VF, Kucharski SA, Misquitta AJ, Moszyński R, Patkowski K, Podeszwa R, Rybak S, Szalewicz K, Williams HL, Wheatley RJ, Wormer PES, Zuchowski PS SAPT (2006) Program package; University of Delaware and University of Warsaw: Newark, Delaware and ul. Pasteura 1, 02-093 Warsaw

  46. Albertí M, Aguilar A, Huarte-Larrañaga F, Lucas JM, Pirani F (2014) Benzene-hydrogen bond (C\(_{6}\)H\(_{6}\)-HX) interactions: the influence of the X nature on their strength and anisotropy. J Phys Chem A 118:1651–1662

    Article  Google Scholar 

  47. Albertí M, Faginas Lago N, Pirani F (2012) Benzene-water interaction: from gaseous dimers to solvated aggregates. Chem Phys 399:232–239

    Article  Google Scholar 

  48. Albertí M, Aguilar A, Lucas JM, Pirani F (2012) Competitive role of CH\(_{4}\)-CH\(_{4}\) and CH-\(\pi\) interactions in C\(_{6}\)H\(_{6}\)-(CH\(_{4}\))\(_{n}\) aggregates: the transition from dimer to cluster features. J Phys Chem A 116:5480–5490

    Article  Google Scholar 

  49. Sherrill CD, Takatani T, Hohenstein EG (2009) An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene–methane, and benzene-H\(_{2}\)S. J Phys Chem A 113:10146–10159

    Article  CAS  Google Scholar 

  50. Tauer TP, Derrick ME, Sherrill CD (2005) Estimates of the ab initio limit for sulfur-\(\pi\) interactions: the H\(_{2}\)S-benzene dimer. J Phys Chem A 109:191–196

    Article  CAS  Google Scholar 

  51. Crittenden DL (2009) A systematic CCSD(T) study of long-range and noncovalent interaction between benzene and a series of first- and second-row hydrides and rare gas atoms. J Phys Chem A 113:1663–1669

    Article  CAS  Google Scholar 

  52. Bloom JWG, Raju RK, Wheeler SE (2012) Physical nature of substituent effects in XH/\(\pi\) interactions. J Chem Theory Comput 8:3167–3174

    Article  CAS  Google Scholar 

  53. Allesch M, Schwegler E, Galli G (2007) Structures and hydrophobic hydration of benzene and hexafluorobenzene from first principles. J Phys Chem B 111:1081–1089

    Article  CAS  Google Scholar 

  54. Head-Gordon M, Pople JA, Frisch J (1998) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    Article  Google Scholar 

  55. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128

    Article  CAS  Google Scholar 

  56. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  57. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford CT

  58. Purvis GD III, Bartlett A (1982) Full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  59. Scuseria GE, Janssen CL, Schaefer HF III (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  60. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  61. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  62. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  63. Gallivan JP, Dougherty DA (1999) Can lone pairs bind to a \(\pi\) system? The water\(^{\dots }\)hexafluorobenzene interaction. Org Lett 1:103–105

    Article  CAS  Google Scholar 

  64. Amicangelo JC, Irwin DG, Lee CJ, Romano NC, Saxton NL (2013) Experimental and theoretical characterization of a lone pair-\(\pi\) complex: water–hexafluorobenzene. J Phys Chem A 117:1336–1350

    Article  CAS  Google Scholar 

  65. Denbigh KG (1940) The polarizabilities of bonds-I. Trans Faraday Soc 36:936–948

    Article  CAS  Google Scholar 

  66. Smith RP, Mortensen EJ (1960) Bond and molecular polarizability tensors. I. Mathematical treatment of bond tensor additivity. J Chem Phys 32:502–507

    Article  CAS  Google Scholar 

  67. Pirani F, Cappelletti D, Liuti G (2001) Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additive approach. Chem Phys Lett 350:286–296

    Article  CAS  Google Scholar 

  68. Cambi R, Cappelletti D, Liuti G, Pirani F (1991) Generalized correlation in terms of polarizability for van der Waals potential parameters calculations. J Chem Phys 95:1852–1861

    Article  CAS  Google Scholar 

  69. Albertí M, Castro A, Laganà A, Moix M, Pirani F, Cappelletti D, Liuti G (2005) A molecular dynamics investigation of rare-gas solvated cation-benzene clusters using a new model potential. J Phys Chem A 109:2906–2911

    Article  Google Scholar 

  70. Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338:62–68

    Article  CAS  Google Scholar 

  71. Albertí M, Aguilar A, Lucas JM, Pirani F (2010) A generalized formulation of ion-\(\pi\) electron interactions: role of the nonelectrostatic component and probe of the potential parameter transferability. J Phys Chem A 114:11964–11970

    Article  Google Scholar 

  72. Albertí M, Aguilar A, Bartolomei M, Cappelletti D, Laganà A, Lucas JM, Pirani F (2008) A study to improve the van der Waals component of the interaction in water clusters. Phys Script 78:058108(1)–058108(7)

    Google Scholar 

  73. Soper AK (2007) Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Cond Mat 19:335206(1)–335206(18)

    Google Scholar 

  74. Nosé SA (1984) Molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  75. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  76. Ewald PP (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys 64:253–287

    Article  Google Scholar 

  77. Wallqvist A, Teleman O (1991) Properties of flexible water models. Mol Phys 74:515–533

    Article  CAS  Google Scholar 

  78. http://www.ccp5.ac.uk/DL_POLYL_CLASSIC/

  79. Albertí M, Faginas Lago N, Laganà A, Pirani F (2011) A portable intermolecular potential for molecular dynamics studies of NMA–NMA and NMA–H\(_{2}\)O aggregates. Phys Chem Chem Phys 13:8422–8432

    Article  Google Scholar 

  80. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  81. Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Albertí, A. Aguilar, F. Huarte-Larrañaga and J. M. Lucas acknowledge financial support from the Ministerio de Educación y Ciencia (Spain, Project CTQ2013-41307-P) and the Generalitat de Catalunya (2009SGR-17). Also thanks are due to the Center de Supercomputació de Catalunya CESCA-C4 and Fundació Catalana per a la Recerca for the allocated supercomputing time. A. Amat thanks FP7-NMP-2009 Project 246124 “SANS” for financial support. F. Pirani acknowledges financial support from the Italian Ministry of University and Research (MIUR) for PRIN Contracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Albertí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertí, M., Amat, A., Aguilar, A. et al. A molecular dynamics study of the evolution from the formation of the \({\text {C}}_{6}{\text {F}}_{6}\)–(\({\text {H}}_{2}{\text {O}})_{n}\) small aggregates to the \({\text {C}}_{6}{\text {F}}_{6}\) solvation. Theor Chem Acc 134, 61 (2015). https://doi.org/10.1007/s00214-015-1662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1662-2

Keywords

Navigation