Skip to main content
Log in

Probing the electronic structures and properties of neutral and anionic ScSi n (0,−1) (n = 1–6) clusters using ccCA-TM and G4 theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometries, electronic structures and energies of small ScSi n species (n = 1−6) and their anions have been systematically investigated by means of the higher level of the ccCA-TM, G4, and G4(MP2) schemes. The global minima of these clusters have been presented. The global minima of neutral ScSi n (n = 1–6) and their anions are “substitutional structure” which is derived from Si n+1 by replacing a Si atom with a Sc atom. The adiabatic electron affinities for ScSi n have been estimated. Compared with limited experimental data, the average absolute deviations from experiment for ccCA-TM, G4, and G4(MP2) are 0.21 eV, 0.22 eV, and 0.25 eV, respectively. The dissociation energies of Sc atom from the lowest-energy structure of ScSi n clusters have been evaluated to examine relative stabilities. The electron affinities and dissociation energies predicted by ccCA-TM, G4, and G4(MP2) methods, especially for ccCA-TM and G4, differ little from each other. The agreement may indicate they are reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42–49

    Article  CAS  Google Scholar 

  2. Raghavachari K, Rohifing CM (1991) J Chem Phys 94:3670–3678

    Article  CAS  Google Scholar 

  3. Raghavachari K (1986) J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  4. Raghavachari K, Rohifing CM (1988) J Chem Phys 89:2219–2234

    Article  CAS  Google Scholar 

  5. Honea EC, Ogura A, Peale DR, Félix C, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1999) J Chem Phys 110:12161–12172

    Article  CAS  Google Scholar 

  6. Yang JC, Xu WG, Xiao WS (2005) J Mol Struct THEOCHEM 719:89–102

    Article  CAS  Google Scholar 

  7. Hao DS, Liu JR, Wu WG, Yang JC (2009) Theor Chem Account 124:431–437

    Article  CAS  Google Scholar 

  8. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733–1736

    Article  CAS  Google Scholar 

  9. Khanna SN, Rao BK, Jena P, Nayak SK (2003) Chem Phys Lett 373:433–438

    Article  CAS  Google Scholar 

  10. Lau JT, Hirsch K, Klar P, Langenberg A, Lofink F, Richter R, Rittmann J, Vogel M, Zamudio-Bayer V, Möller T, Issendorff BV (2009) Phys Rev A 79:053201-1–053201-5

    Article  Google Scholar 

  11. Xu HG, Zhang ZG, Feng Y, Yuan J, Zhao Y, Zheng W (2010) Chem Phys Lett 487:204–208

    Article  CAS  Google Scholar 

  12. Beck SM (1987) J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  13. Beck SM (1989) J Chem Phys 90:6306–6312

    Article  CAS  Google Scholar 

  14. Xu HG, Wu MM, Zhang ZG, Yuan J, Sun Q, Zheng W (2012) J Chem Phys 136:104308-1–104308-10

    Google Scholar 

  15. Kong X, Xu HG, Zheng W (2012) J Chem Phys 137:064307-1–064307-9

    Article  Google Scholar 

  16. Zheng W, Nilles JM, Radisic D, Bowen KH Jr (2005) J Chem Phys 122:071101-1–071101-3

    Google Scholar 

  17. Wang J, Zhao J, Ma L, Wang B, Wang G (2007) Phys Lett A 367:335–344

    Article  CAS  Google Scholar 

  18. Ma L, Zhao J, Wang J, Wang B, Lu Q, Wang G (2006) Phys Rev B 73:125439-1–125439-7

    Google Scholar 

  19. Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vaille JL, Palpant B, Lerme J (1997) J Phys D Appl Phys 30:709–721

    Article  CAS  Google Scholar 

  20. Hossain D, Pittman CU Jr, Gwaltney SR (2008) Chem Phys Lett 451:93–97

    Article  CAS  Google Scholar 

  21. Li J, Wang G, Yao C, Mu Y, Wan J, Han M (2009) J Chem Phys 130:164514-1–164514-8

    Google Scholar 

  22. Kumar V, Kawazoe Y (2002) Phys Rev B 65:073404-1–073404-4

    Google Scholar 

  23. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503-1–045503-4

    Google Scholar 

  24. Guo LJ, Liu X, Zhao GF, Luo YH (2007) J Chem Phys 126:234704-1–234704-7

    Google Scholar 

  25. Ma L, Zhao J, Wang J, Lu Q, Zhu L, Wang G (2005) Chem Phys Lett 411:279–284

    Article  CAS  Google Scholar 

  26. Ren ZY, Li F, Guo P, Han JG (2005) J Mol Struct THEOCHEM 718:165–173

    Article  CAS  Google Scholar 

  27. Han JG, Hagelberg F (2001) Chem Phys 263:255–262

    Article  CAS  Google Scholar 

  28. Xiao C, Abraham A, Quinn R, Hagelberg F, Lester WA Jr (2002) J Phys Chem A 106:11380–11393

    Article  CAS  Google Scholar 

  29. Sen P, Mitas L (2003) Phys Rev B 68:155404-1–155404-4

    Google Scholar 

  30. Reveles JU, Khanna SN (2005) Phys Rev B 72:165413-1–165413-6

    Google Scholar 

  31. Reveles JU, Khanna SN (2006) Phys Rev B 74:035435-1–035435-6

    Google Scholar 

  32. Wu ZJ, Su ZM (2006) J Chem Phys 124:184306-1–184306-15

    Google Scholar 

  33. Torres MB, Balbás LC (2007) Eur Phys J D 43:217–220

    Article  CAS  Google Scholar 

  34. Guo L, Zhao G, Gu Y, Liu X, Zeng Z (2008) Phys Rev B 77:195417-1–195417-8

    Google Scholar 

  35. Torres MB, Fernández EM, Balbás LC (2007) Phys Rev B 75:205425-1–205425-12

    Article  Google Scholar 

  36. He J, Wu K, Liu C, Sa R (2009) Chem Phys Lett 483:30–34

    Article  CAS  Google Scholar 

  37. Wang J, Ma QM, Xu RP, Liu Y, Li YC (2009) Phys Lett A 373:2869–2875

    Article  CAS  Google Scholar 

  38. Xu HG, Wu MM, Zhang ZG, Sun Q, Zheng WJ (2011) Chin Phys B 20:043102-1–043102-8

    Google Scholar 

  39. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) J Chem Phys 129:214301-1–214301-7

    Article  Google Scholar 

  40. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998–4999

    Article  CAS  Google Scholar 

  41. Xu HG, Zhang ZG, Feng Y, Zheng W (2010) Chem Phys Lett 498:22–26

    Article  CAS  Google Scholar 

  42. Jiang W, Laury ML, Powell M, Wilson AK (2012) J Chem Theory Comput 8:4102–4111

    Article  CAS  Google Scholar 

  43. Jiang W, DeYonker NJ, Determan JJ, Wilson AK (2012) J Phys Chem A 116:870–885

    Article  CAS  Google Scholar 

  44. DeYonker NJ, Williams TG, Imel AE, Cundari TR, Wilson AK (2009) J Chem Phys 131:024106-1–024106-9

    Google Scholar 

  45. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) J Phys Chem A 113:5170–5175

    Article  CAS  Google Scholar 

  46. Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  47. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107-1–064107-15

    Article  Google Scholar 

  48. Hao DS, Liu JR, Yang JC (2008) J Phys Chem A 112:10113–10119

    Article  CAS  Google Scholar 

  49. Fan HW, Yang JC, Lu W, Ning HM, Zhang QC (2010) J Phys Chem A 114:1218–1223

    Article  CAS  Google Scholar 

  50. Fan HW, Ren ZQ, Yang JC, Hao DS, Zhang QC (2010) J Mol Struct THEOCHEM 958:26–32

    Article  CAS  Google Scholar 

  51. Ning HM, Fan HW, Yang JC (2011) Comput Theor Chem 976:141–147

    Article  CAS  Google Scholar 

  52. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, constants of diatomic molecules, vol IV. Reinhold, New York

    Book  Google Scholar 

  53. Stull DR, Prophet H (1971) JANAF thermochemical tables, NSRDS Natl. Stand. Ref. Data Serv. Natl. Bur. Stand. No 37 (U.S. GPO, Washington, DC)

  54. Hoops AA, Bise RT, Choi H, Neumark DM (2001) Chem Phys Lett 346:89–96

    Article  CAS  Google Scholar 

  55. Williams TG, DeYonker NJ, Ho BS, Wilson AK (2011) Chem Phys Lett 504:88–94

    Article  CAS  Google Scholar 

  56. Stanton JF (1994) J Chem Phys 101:371–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Grant (No, 21263010) from the National Natural Science Foundation of China, by the Grant (No. 2009MS0208) from the Inner Mongolia Natural Science Foundation, by the Inner Mongolia Talent Foundation from the Inner Mongolia Department of Human Resources and Social Security, and by a Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (No.NJZC13367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Yang, J., Kang, Y. et al. Probing the electronic structures and properties of neutral and anionic ScSi n (0,−1) (n = 1–6) clusters using ccCA-TM and G4 theory. J Mol Model 20, 2114 (2014). https://doi.org/10.1007/s00894-014-2114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2114-y

Keywords

Navigation