Skip to main content
Log in

Theoretical study of both low- and high-temperature \(\gamma \)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) crystalline phases

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In order to understand the electronic properties that \(\gamma \)(L)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) and \(\gamma \)(H)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) crystalline phases present, theoretical calculations were performed under the density functional theory (DFT) method. The computed PDOS for both phases shows that although these present a difference in bandgap values (larger for \(\gamma \)(H)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) phase), the same type of orbitals is found at the HOMO and LUMO levels. The Löwdin charge values obtained from a population analysis suggest that the \(\gamma \)(H)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) phase presents a larger number of both acid and basic sites at the free surface. We also observe that the occupation degree of the valence orbitals in this phase is greater than that in the \(\gamma \)(L)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olivas A, Galván DH, Alonso G, Fuentes S (2009) Appl. Catal. A 352:10. https://doi.org/10.1016/j.apcata.2008.09.022

    Article  CAS  Google Scholar 

  2. Galvan D, Deepak FL, Esparza R, Posada-Amarillas A, Núñez-González R, López-Lozano X, José-Yacamán M (2011) Appl. Catal. A 397:46. https://doi.org/10.1016/j.apcata.2011.02.010

    Article  CAS  Google Scholar 

  3. Castro-Guerrero CF, Deepak FL, Ponce A, Cruz-Reyes J, Valle-Granados MD, Fuentes-Moyado S, Galván DH, José-Yacamán M (2011) Catal. Sci. Technol., 1024–1031. https://doi.org/10.1039/C1CY00055A

  4. Rangel R, Bartolo-Pérez P, Martínez E, Trejo-Cruz XA, Díaz G, Galván DH (2012) Catal. Sci. Technol. 2:847. https://doi.org/10.1039/C2CY00506A

    Article  CAS  Google Scholar 

  5. Olivas A, Antúnez-García J, Fuentes S, Galván D (2014) Catal. Today 220–222:106. https://doi.org/10.1016/j.cattod.2013.09.055

    Article  CAS  Google Scholar 

  6. Avalos-Borja M, Galvan DH, Ning XG (1995) MRS Proc. 404:195. https://doi.org/10.1557/PROC-404-195

    Article  Google Scholar 

  7. Galván DH, Avalos-Borja M, Fuentes S, Cota-Araiza L, Cruz-Reyes J, Castillón FF, Maple MB (1994) MRS Proc. 368:265. https://doi.org/10.1557/PROC-368-265

    Article  Google Scholar 

  8. Galván DH, Castillón FF, Gómez LA, Avalos-Borja M, Cota L, Fuentes S, Bartolo-Pérez P, Maple MB (1999) React. Kinet. Catal. Lett. 67:205. https://doi.org/10.1007/BF02475849

    Article  Google Scholar 

  9. Galván DH, Fuentes S, Avalos-Borja M, Cota-Araiza L, Cruz-Reyes J, Early EA, Maple MB (1993) Catal. Lett. 18:273. https://doi.org/10.1007/BF00769447

    Article  Google Scholar 

  10. Aykan K (1968) J. Catal. 12:281. https://doi.org/10.1016/0021-9517(68)90109-7

    Article  CAS  Google Scholar 

  11. Batist P, Bouwens J, Schuit G (1972) J. Catal. 25(1):1. https://doi.org/10.1016/0021-9517(72)90196-0

    Article  CAS  Google Scholar 

  12. Graselli RK (1984) In: Shapiro BL (ed) Heterogeneous catalysis. In: Proceedings of the IInd symposium of the industry. Cooperative Chemistry Program of the Texas AM University. Texas A & M Univ. Press, College Station

  13. Sim LT, Lee CK, West AR (2002) J. Mater. Chem. 12:17. https://doi.org/10.1039/B106792N

    Article  CAS  Google Scholar 

  14. Kodama H, Watanabe A (1985) J. Solid State Chem. 56:225. https://doi.org/10.1016/0022-4596(85)90059-3

    Article  CAS  Google Scholar 

  15. Boreskov GK (1973) In: Proceedings of the 5th International congress on catalysis North-Holland, Amsterdam

  16. Canadell E, Whangbo MH (1991) Chem. Rev. 91:965. https://doi.org/10.1021/cr00005a015

    Article  CAS  Google Scholar 

  17. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, Laskowsk R, Tran F, Marks L (2019)

  18. Madsen GKH, Blaha P, Schwarz K, Sjöstedt E, Nordström L (2001) Phys. Rev. B 64:195134. https://doi.org/10.1103/PhysRevB.64.195134

    Article  CAS  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Phys. Rev. 136:B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Phys. Rev. 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  21. de la Cruz AM, Alfaro SO, Cuéllar EL, Méndez UO (2007) Catal. Today 129:194. https://doi.org/10.1016/j.cattod.2007.08.004

    Article  CAS  Google Scholar 

  22. Blasse G (1966) J. Inorg. Nucl. Chem. 28:1124. https://doi.org/10.1016/0022-1902(66)80217-8

    Article  CAS  Google Scholar 

  23. van den Elzen AF, Boon L, Metslaar R (1982) Solid State Chemistry. Elsevier, Amsterdam

    Google Scholar 

  24. Erman LY, Gal’perin EL (1968) Russ. J. Inorg. Chem. Engl. Trans. 13:487

    Google Scholar 

  25. Bégué P, Enjalbert R, Galy J, Castro A (2000) SSS 2:637. https://doi.org/10.1016/S1293-2558(00)01077-3

    Article  Google Scholar 

  26. Teller RG, Brazdil JF, Grasselli RK, Jorgensen JD (1984) Acta Crystallogr. C 40:2001. https://doi.org/10.1107/S0108270184010398

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  28. Tran F, Blaha P (2009) Phys. Rev. Lett. 102:226401. https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  PubMed  Google Scholar 

  29. Koller D, Tran F, Blaha P (2012) Phys. Rev. B 85:155109. https://doi.org/10.1103/PhysRevB.85.155109

    Article  CAS  Google Scholar 

  30. Becke AD, Johnson ER (2006) J. Chem. Phys. 124:014104. https://doi.org/10.1063/1.2139668

    Article  CAS  Google Scholar 

  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J. Phys.: Cond. Matter 21(39):395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  32. Belver C, Adán C, Fernández-García M (2009) Catal. Today 143:274. https://doi.org/10.1016/j.cattod.2008.09.011

    Article  CAS  Google Scholar 

  33. Zhao X, Xu T, Yao W, Zhu Y (2009) Appl. Surf. Sci. 255(18):8036. https://doi.org/10.1016/j.apsusc.2009.05.010

    Article  CAS  Google Scholar 

  34. Lou SN, Amal R, Scott J, Ng YH, Appl ACS (2018) Energy Mater. 1:3955. https://doi.org/10.1021/acsaem.8b00675

    Article  CAS  Google Scholar 

  35. Opoku F, Govender KK, van Sittert CGCE, Govender PP (2018) Appl. Surf. Sci. 427:487. https://doi.org/10.1016/j.apsusc.2017.09.019

    Article  CAS  Google Scholar 

  36. Ono T, Utsumi K, Tsukamoto S, Tamaru H, Kataoka M, Noguchi F (2010) J. Mol. Catal. A 318(1):94. https://doi.org/10.1016/j.molcata.2009.11.012

    Article  CAS  Google Scholar 

  37. Chen HY, Sleight AW (1986) J. Solid State Chem. 63:70. https://doi.org/10.1016/0022-4596(86)90153-2

    Article  CAS  Google Scholar 

  38. Xie L, Ma J, Xu G (2008) Mater. Chem. phys. 110(2):197. https://doi.org/10.1016/j.matchemphys.2008.01.035

    Article  CAS  Google Scholar 

  39. Yu J, Kudo A (2005) Chem. Lett. 34:1528. https://doi.org/10.1246/cl.2005.1528

    Article  CAS  Google Scholar 

  40. Lou SN, Scott J, Iwase A, Amal R, Ng YH (2016) J. Mater. Chem. A 4:6964. https://doi.org/10.1039/C6TA00700G

    Article  CAS  Google Scholar 

  41. Kashfi-Sadabad R, Yazdani S, Alemi A, Huan TD, Ramprasad R, Pettes MT (2016) Langmuir 32:10967. https://doi.org/10.1021/acs.langmuir.6b02854

    Article  CAS  PubMed  Google Scholar 

  42. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) J. Phys. Chem. B 110:17790. https://doi.org/10.1021/jp0622482

    Article  CAS  PubMed  Google Scholar 

  43. Kizler P, Su H, Majewski P, Aldinger F (1994) Physica C 233(3):415. https://doi.org/10.1016/0921-4534(94)90771-4

    Article  CAS  Google Scholar 

  44. Adcock AK, Batrice RJ, Bertke JA, Knope KE (2017) Eur. J. Inorg. Chem. 2017(11):1435. https://doi.org/10.1002/ejic.201601368

    Article  CAS  Google Scholar 

  45. Lu P, Ren T, Jia B, Yan B, Liu G, Guo M, Wang Y, Peng G (2018) IEEE J. Sel. Top. Quantum Electron. 24:1. https://doi.org/10.1109/JSTQE.2017.2785959

    Article  Google Scholar 

  46. Hardcastle FD, Wachs IE (1990) J. Raman Spectrosc. 21:683. https://doi.org/10.1002/jrs.1250211009

    Article  CAS  Google Scholar 

  47. Dieterle M, Weinberg G, Mestl G (2002) Phys. Chem. Chem. Phys. 4:812. https://doi.org/10.1039/B107012F

    Article  CAS  Google Scholar 

  48. Mitoraj MP, Michalak A (2012) Struct. Chem. 23:1369. https://doi.org/10.1007/s11224-012-0056-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project SENER-CONACyT 117373, UNAM PAPIIT IN107817 Grant and RFBR-CITMA Project No. 18-53-34004 and through the basic-science Project A1-S-33492. RNG is grateful to ACARUS at Universidad de Sonora for the computer time support. We also want to thank for the supercomputing time provided by the UNAM through the project LANCAD-UNAM-DGTIC-041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Antúnez-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-González, R., Antúnez-García, J., Posada-Amarillas, A. et al. Theoretical study of both low- and high-temperature \(\gamma \)-\({\text {Bi}}_{2}{\text {MoO}}_{6}\) crystalline phases. Theor Chem Acc 139, 152 (2020). https://doi.org/10.1007/s00214-020-02666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02666-0

Keywords

Navigation