Skip to main content
Log in

Structure and bonding in NbX5 X = (F, Cl, Br and I) complexes: a molecular orbital perspective in the C–H bond activation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present work, theoretical studies of the reactivity and stability of the NbX5 complexes (X = F, Cl, Br and I) were carried out in the methane C–H bond activation. To study the chemical bonds formation of these complexes, an energy decomposition analysis was performed together with QTAIM calculations. The main results indicated that the interaction and binding energies are higher for NbF5 in relation to the halogen series. The niobium complexes gaps are influenced by the electronegativity of the halogens and the Nb–X bonding lengths. According to the energy diagram, the electrons less connected to the bond are σNb–I; on the other hand, the best electron acceptor is σ*Nb–F. The QTAIM calculations confirmed stronger Nb–X chemical bonds in NbF5 complexes. Regarding the reactivity of the niobium complexes, the overall results indicate better thermodynamic and kinetic conditions for the NbF5 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marchetti F, Pampaloni G, Pinzino C (2013) Long-lived radical cation salts obtained by interaction of monocyclic arenes with niobium and tantalum pentahalides at room temperature: EPR and DFT studies. Chem Eur J 19:13962–13969

    Article  CAS  Google Scholar 

  2. So SP (1973) Normal coordinate analysis and thermodynamic functions of niobium and tantalum pentahalides. J Mol Struct 16:311–320

    Article  CAS  Google Scholar 

  3. Waters T, Wedd AG, Ziolek M, Nowak I (2003) Niobium and tantalum. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 4. Elsevier, Oxford, pp 242–312

    Google Scholar 

  4. Constantino MG, Júnior VL, Invernize PR, da Silva Filho LC, da Silva GVJ (2007) Opening of epoxide rings catalyzed by niobium pentachloride. Synth Commun 37:3529–3539

    Article  CAS  Google Scholar 

  5. Yoshizawa K, Shiota Y, Yamabe T (1998) Methane–methanol conversion by MnO+, FeO+, and CoO+: a theoretical study of catalytic selectivity. J Am Chem Soc 120:564–572

    Article  CAS  Google Scholar 

  6. Crabtree RH (1995) Aspects of methane chemistry. Chem Rev 95:987–1007

    Article  CAS  Google Scholar 

  7. Hartwig J (2009) Handbook organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito

    Google Scholar 

  8. Collman JP, Hagedus LG, Norton JR, Finke RG (1987) Principles and applications of organotransition metal chemistry. Oxford University Press, Oxford

    Google Scholar 

  9. Smith MS (2013) March’s advanced organic chemistry: reactions, mechanisms and structure, 7th edn. Wiley, New York

    Google Scholar 

  10. Bauer I, Knölker H-J (2015) Iron catalysis in organic synthesis. Chem Rev 115:3170–3387

    Article  CAS  Google Scholar 

  11. Richard MC, Armentrout PB, Wibe AJ (2015) Activation of CH4 by Th+ as studied by guided ion beam mass spectrometry and quantum chemistry. Inorg Chem 54:3584–3599

    Article  Google Scholar 

  12. Jana R, Detlef S (2010) Selective activation of alkanes by gas-phase metal ions. Chem Rev 110:1170–1211

    Article  Google Scholar 

  13. Bortoluzzi M, Marchetti F, Pampaloni G et al (2013) Coordination complexes of NbX5 (X = F, Cl) with (N, O)- and (O, O)-donor ligands and the first X-ray characterization of a neutral NbF5 adduct. Dalton Trans 42:13054–13064

    Article  CAS  Google Scholar 

  14. Gostin PF, Helth A, Voss A, Sueptitz R, Calin M, Eckert J, Gebert A (2013) Surface treatment, corrosion behavior, and apatite-forming ability of Ti–45Nb implant alloy. J Biomed Mater Res B 101:269–278

    Article  Google Scholar 

  15. Marchetti F, Pampaloni G, Zacchini S (2009) The reactivity of 1,1-dialkoxyalkanes with niobium and tantalum pentahalides. Formation of coordination compounds, C–H and C–C bond activation and the X-ray structure of the stable carboxonium species [Me2C=CHC(=OMe)Me][NbCl5(OMe)]. Dalton Trans 38:8096–8106

    Article  Google Scholar 

  16. Fleming FF, Ravikumar PC, Yao L (2009) Direct conversion of aldehydes and ketones to allylic halides by a NbX(5-)[3,3] rearrangement. Synlett 2009:1077–1080

    Article  Google Scholar 

  17. Marchetti F, Pampaloni G (2011) The reactivity of NbX5 (X = F, Cl) with lactons, lactams, and the synthesis of the first nucleobase-containing niobium complex. Inorg Chim Acta 376:123–128

    Article  CAS  Google Scholar 

  18. Bini R, Marchetti F, Pampaloni G, Zacchini S (2011) Further insights into the chemistry of niobium and tantalum pentahalides with 1,2-dialkoxyalkanes: synthesis of bromo- and iodoalkoxides, spectroscopic and computational studies. Polyhedron 30:1412–1419

    Article  CAS  Google Scholar 

  19. Bortoluzzi M, Hayatifar M, Marchetti F et al (2015) Synthesis of α-amino acidato derivatives of niobium and tantalum pentahalides and their conversion into iminium salts. Inorg Chem 54:4047–4055

    Article  CAS  Google Scholar 

  20. Bortoluzzi M, Ferretti E, Marchetti F et al (2016) Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand. Dalton Trans 45:6939–6948

    Article  CAS  Google Scholar 

  21. Clemmer DE, Aristov N, Armentrout PB (1993) Reactions of scandium oxide (ScO+), titanium oxide (TiO+) and vanadyl (VO+) with deuterium: M+–OH bond energies and effects of spin conservation. J Phys Chem 97:544–552

    Article  CAS  Google Scholar 

  22. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  23. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  24. Bader RFW (1980) Handbook quantum topology of molecular charge-distributions. The mechanics of an atom in a molecule. J Chem Phys 73:2871–2883

    Article  CAS  Google Scholar 

  25. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536

    Article  CAS  Google Scholar 

  26. te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396–1402

    Article  CAS  Google Scholar 

  29. Vl E, Be J (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156

    Article  Google Scholar 

  30. Gonçalves MA, Santos LS, Prata DM et al (2016) Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc 136:15

    Article  Google Scholar 

  31. Lino JBR, Rocha EP, Ramalho TC (2017) Value of NMR parameters and DFT calculations for quantum information processing utilizing phosphorus heterocycles. J Phys Chem A 121:4486–4495

    Article  CAS  Google Scholar 

  32. Rocha EP, Ramalho TC (2016) Probing the ESIPT process in 2-amino-1,4-naphthoquinone: thermodynamics properties, solvent effect and chemometric analysis. Theor Chem Acc 135:39

    Article  Google Scholar 

  33. Rocha MVJ, Smits NWG, Wolters LP et al (2017) Asymmetric identity SN2 transition states: nucleophilic substitution at α-substituted carbon and silicon centers. Int J Mass Spectrom 413:85–91

    Article  CAS  Google Scholar 

  34. Matthias BF, Jan BE (2007) Kohn–Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-Blackwell, pp 1–86

  35. von Hopffgarten M, Gernot F (2011) Energy decomposition analysis. Wiley Interdiscip Rev Comput Mol Sci 2:43–62

    Article  Google Scholar 

  36. Bickelhaupt FM, Nibbering NMM, Van Wezenbeek EM, Baerends EJ (1992) Central bond in the three CN.cntdot.dimers NC–CN, CN–CN and CN–NC: electron pair bonding and Pauli repulsion effects. J Phys Chem 96:4864–4873

    Article  CAS  Google Scholar 

  37. de Almeida KJ, Silva TC, Neto JL et al (2016) Methane C–H bond activation by niobium oxides: theoretical analyses of the bonding and reactivity properties of Nbomn+ (m = 1, 2; n = 0, 1, 2). J Organomet Chem 802:49–59

    Article  Google Scholar 

  38. Fairbrother F (1967) The chemistry of niobium and tantalum. Elsevier, Amsterdam

    Google Scholar 

  39. Brown TL Jr, Lemay HE, Bursten E (2005) Química, a ciência central, vol 1, 9th edn. Prentice-Hall, Upper Saddle River, pp 289–334

    Google Scholar 

  40. Stefan G (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  Google Scholar 

  41. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  42. Spackman MA, Maslen EN (1986) Chemical properties from the promolecule. J Phys Chem 90:2020–2027

    Article  CAS  Google Scholar 

  43. King CR, Gustafson SJ, Ess DH (2016) The electronics of CH activation by energy decomposition analysis: from transition metals to main-group metals. In: Macgregor SA, Eisenstein O (eds) BT—computational studies in organometallic chemistry. Springer, Cham, pp 163–178

    Google Scholar 

  44. Kitauraa K, Sawai T, Asada T, Nakano T et al (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 312:319–324

    Article  Google Scholar 

  45. Nakano T, Kaminuma T, Sato T et al (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  46. Parameswaran P, Frenking G (2010) Chemical bonding in transition metal complexes with beryllium ligands [(PMe3)2M–BeCl2], [(PMe3)2M–BeClMe], and [(PMe3)2M–BeMe2] (M = Ni, Pd, Pt). J Phys Chem A 114:8529–8535

    Article  CAS  Google Scholar 

  47. Gonçalves MA, Santos LS, Prata DM, Peixoto FC, da Ccunha EFF, Ramalho TC (2017) Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc 136:1–15

    Article  Google Scholar 

  48. Santos LA, da Cunha EFF, Ramalho TC (2017) Toward the classical description of halogen bonds: a quantum based generalized empirical potential for fluorine, chlorine, and bromine. J Phys Chem A 121:2442–2451

    Article  CAS  Google Scholar 

  49. Matta CF, Body RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley, London, p 524

    Book  Google Scholar 

  50. Andrade CKZ (2004) Niobium pentachloride in organic synthesis: applications and perspectives. Curr Org Synth 1:333–353

    Article  CAS  Google Scholar 

  51. Li C, Dinoi C, Coppel Y, Etienne M (2015) CH bond activation of methane by a transient η2-cyclopropene/metallabicyclobutane complex of niobium. J Am Chem Soc 137:12450–12453

    Article  CAS  Google Scholar 

  52. Gorelsky SI, Lapointe D, Fagnou K (2008) Analysis of the concerted metalation–deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J Am Chem Soc 130:10848–10849

    Article  CAS  Google Scholar 

  53. Lapointe D, Fagnou K (2010) Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem Lett 39:1118–1126

    Article  Google Scholar 

  54. Lao KU, Herbert JM (2016) Energy decomposition analysis with a stable charge-transfer term for interpreting intermolecular interactions. J Chem Theory Comput 12:2569–2582

    Article  CAS  Google Scholar 

  55. Li J, Zhou S, Zhang J et al (2016) Electronic origins of the variable efficiency of room-temperature methane activation by homo- and heteronuclear cluster oxide cations [XYO2]+ (X, Y = Al, Si, Mg): competition between proton-coupled electron transfer and hydrogen-atom transfer. J Am Chem Soc 138:7973–7981

    Article  CAS  Google Scholar 

  56. Wolters LP, Koekkoek R, Bickelhaupt FM (2015) Role of steric attraction and bite-angle flexibility in metal-mediated C–H bond activation. ACS Catal 5:5766–5775

    Article  CAS  Google Scholar 

  57. Silva TC, de Almeida KJ, dos Santos Pires M et al (2017) Theoretical structural and electronic analyses with emphasis on the reactivity of iron oxide prototypes in methane C–H bond activation. React Kinet Mech Catal 120:195–208

    Article  CAS  Google Scholar 

  58. Lustemberg PG, Palomino RM, Gutiérrez RA et al (2018) Direct conversion of methane to methanol on Ni-ceria surfaces: metal–support interactions and water-enabled catalytic conversion by site blocking. J Am Chem Soc 140:7681–7687

    Article  CAS  Google Scholar 

  59. Tsuji Y, Yoshizawa K (2018) Adsorption and activation of methane on the (110) surface of rutile-type metal dioxides. J Phys Chem C 122:15359–15381

    Article  CAS  Google Scholar 

  60. Sun Z, Hull OA, Cundari TR (2018) Computational study of methane C–H activation by diiminopyridine nitride/nitridyl complexes of 3d transition metals and main-group elements. Inorg Chem 57:6807–6815

    Article  CAS  Google Scholar 

  61. Roithová J, Schröder D (2010) Selective activation of alkanes by gas-phase metal ions. Chem Rev 110:1170–1211

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian financial agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa (CAPES/MD) for financial support, and the Federal University of Lavras (UFLA) for providing the physical infrastructure and working space. This work was also supported by Excellence project FIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodorico Castro Ramalho.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.C., Pires, M.d.S., de Castro, A.A. et al. Structure and bonding in NbX5 X = (F, Cl, Br and I) complexes: a molecular orbital perspective in the C–H bond activation. Theor Chem Acc 137, 146 (2018). https://doi.org/10.1007/s00214-018-2348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2348-3

Keywords

Navigation