Skip to main content

Advertisement

Log in

DFT calculations on subnanometric metal catalysts: a short review on new supported materials

  • Feature Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Metal clusters have been used in catalysis for a long time, even in industrial production protocols, and a large number of theoretical and experimental studies aimed at characterizing their structure and reactivity, either when supported or not, are already present in the literature. Nevertheless, in the last years the advances made in the control of the synthesis and stabilization of subnanometric clusters promoted a renewed interest in the field. The shape and size of sub-nanometer clusters are crucial in determining their catalytic activity and selectivity. Moreover, if supported, subnanometric clusters could be highly influenced by the interactions with the support that could affect geometric and electronic properties of the catalyst. These effects also present in the case of metal nanoparticles assume an even more prominent role in the “subnano world.” DFT-based simulations are nowadays essential in elucidating and unraveling reaction mechanisms. The outstanding position of this corner of science will be highlighted through a selected number of examples present in the literature, concerning the growth and reactivity of subnanometric supported metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmid G, Fenske D (2010) Philos Trans R Soc A 368:1207–1210

    Article  CAS  Google Scholar 

  2. Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Phys Rev Lett 79:1873–1876

    Article  CAS  Google Scholar 

  3. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis. Wiley, New York

    Book  Google Scholar 

  4. Yau SH, Varnavski O, Goodson T (2013) Acc Chem Res 46(7):1506–1516

    Article  CAS  Google Scholar 

  5. Baxter ET, Ha MA, Cass AC, Alexandrova AN, Anderson SL (2017) ACS Catal 7(5):3322–3335

    Article  CAS  Google Scholar 

  6. Tyo EC, Vajda S (2015) Nat Nanotechnol 10:577–586

    Article  CAS  Google Scholar 

  7. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328(5975):224–228

    Article  CAS  Google Scholar 

  8. Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Science 326(5954):826–829

    Article  CAS  Google Scholar 

  9. Oliver-Messeguer J, Liu L, García-García S, Canós-Giménez C, Domínguez I, Gavara R, Doménech-Carbó A, Concepción P, Leyva-Pérez A, Corma A (2015) J Am Chem Soc 137(11):3894–3900

    Article  Google Scholar 

  10. Oliver-Messeguer J, Dominguez I, Gavara R, Leyva-Pérez A, Corma A (2017) ChemCatChem 9(8):1429–1435

    Article  Google Scholar 

  11. Liu C, Yang B, Tyo E, Seifert S, De Bartolo J, von Issendorff B, Zapol P, Vajda S, Curtiss LA (2015) J Am Chem Soc 137(27):8676–8679

    Article  CAS  Google Scholar 

  12. Zhang S, Chang C, Huang Z, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y (2016) J Am Chem Soc 138(8):2629–2637

    Article  CAS  Google Scholar 

  13. Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Chem Commun 46:5997–6015

    Article  CAS  Google Scholar 

  14. Zhang C, Michaelides A, King DA, Jenkins SJ (2010) J Am Chem Soc 132(7):2175–2182

    Article  CAS  Google Scholar 

  15. Gao Y, Shao N, Pei Y, Chen Z, Zeng XC (2011) ACS Nano 5(10):7818–7829

    Article  CAS  Google Scholar 

  16. Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ (2014) Phys Rev B 90:161407–161412

    Article  Google Scholar 

  17. Prestianni A, Ferrante F, Sulman EM, Duca D (2014) J Phys Chem C 118:21006–21013

    Article  CAS  Google Scholar 

  18. Debnath S, Said SM, Rabilloud F, Chatterjee A, Roslan MF, Mainal A, Mahmood MS (2015) RSC Adv 5:98583–98592

    Article  CAS  Google Scholar 

  19. Ferrante F, Prestianni A, Cortese R, Schimmenti R, Duca D (2016) J Phys Chem C 120:12022–12031

    Article  CAS  Google Scholar 

  20. Demiroglu I, Yao K, Hussein HA, Johnston RL (2017) J Phys Chem C 121(20):10773–10780

    Article  CAS  Google Scholar 

  21. Lacaze-Dufaure C, Roques J, Mijoule C, Sicilia E, Russo N, Alexiev V, Mineva T (2011) J Mol Catal A Chem 341:28–34

    Article  CAS  Google Scholar 

  22. Prestianni A, Ferrante F, Simakova OA, Duca D, Murzin DYu (2013) Chem Eur J 19:4577–4585

    Article  CAS  Google Scholar 

  23. Ferrante F, Prestianni A, Duca D (2014) J Phys Chem C 118:551–558

    Article  CAS  Google Scholar 

  24. Xu C, Lee M, Wang Y, Cantu DC, Li J, Glezakou V, Rousseau R (2017) ACS Nano 11(2):1649–1658

    Article  CAS  Google Scholar 

  25. Zhai H, Alexandrova AN (2017) ACS Catal 7:1905–1911

    Article  CAS  Google Scholar 

  26. Duca D, Barone G, Giuffrida S, Varga Zs (2007) J Comput Chem 28:2483–2499

    Article  CAS  Google Scholar 

  27. Duca D, Botár L, Vidóczy T (1996) J Catal 162:260–267

    Article  CAS  Google Scholar 

  28. Duca D, Baranyai P, Vidóczy T (1998) J Comput Chem 19:396–403

    Article  CAS  Google Scholar 

  29. Cremer PS, Su X, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949

    Article  CAS  Google Scholar 

  30. Boudart M (1995) Chem Rev 95:661–666

    Article  CAS  Google Scholar 

  31. Crampton AS, Rötzer MD, Ridge CJ, Schweinberger FF, Heiz U, Yoon B, Landman U (2016) Nat Commun 7. Article number: 10389

  32. Yang B, Liu C, Halder A, Tyo EC, Martinson ABF, Seifert S, Zapol P, Curtiss LA, Vajda S (2017) J Phys Chem C 121(19):10406–10412

    Article  CAS  Google Scholar 

  33. Prestianni A, Crespo-Quesada M, Cortese R, Ferrante F, Kiwi-Minsker L, Duca D (2014) J Phys Chem C 118:3119–3128

    Article  CAS  Google Scholar 

  34. Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Cárdenas-Lizana F, Duca D, Weidenkaff A, Kiwi-Minsker L (2015) J Phys Chem C 119:1101–1107

    Article  CAS  Google Scholar 

  35. Hakkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42(11):1297–1300

    Article  CAS  Google Scholar 

  36. Campbell CT (2012) Nat Chem 4(8):597–598

    Article  CAS  Google Scholar 

  37. Ahmadi M, Mistry H, Roldan Cuenya B (2016) J Phys Chem Lett 7:3519–3533

    Article  CAS  Google Scholar 

  38. Lopez N, Nørskov JK (2002) J Am Chem Soc 124(38):11262–11263

    Article  CAS  Google Scholar 

  39. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115(2):301–309

    Article  CAS  Google Scholar 

  40. Wang GM, BelBruno JJ, Kenny SD, Smith R (2005) Surf Sci 576(1):107–115

    Article  CAS  Google Scholar 

  41. Lin S, Pei Y (2014) J Phys Chem C 118(35):20346–20356

    Article  CAS  Google Scholar 

  42. Prestianni A, Martorana A, Ciofini I, Labat F, Adamo C (2008) J Phys Chem C 112:18061–18066

    Article  CAS  Google Scholar 

  43. Prestianni A, Martorana A, Labat F, Ciofini I, Adamo C (2009) J Mol Struct THEOCHEM 903:34–40

    Article  CAS  Google Scholar 

  44. Okumura M, Haruta M (2016) Catal Today 259:81–86

    Article  CAS  Google Scholar 

  45. Manzoli M, Vindigni F, Tabakova T, Lamberti C, Dimitrov D, Ivanov K, Agostini G (2017) J Mater Chem A 5:2083–2094

    Article  CAS  Google Scholar 

  46. Lei X, Mbamalu G, Qin C (2017) J Phys Chem C 121:2635–2642

    Article  CAS  Google Scholar 

  47. Schimmenti R, Cortese R, Duca D, Mavrikakis M (2017) ChemCatChem 9:1610–1620

    Article  CAS  Google Scholar 

  48. Benziger RJMJB (1979) Surf Sci 79:394–412

    Article  CAS  Google Scholar 

  49. Sun YKHW (1991) J Chem Phys 94:4587–4599

    Article  CAS  Google Scholar 

  50. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) ACS Catal 4:4434–4445

    Article  CAS  Google Scholar 

  51. Choi SI, Herron JA, Scaranto J, Huang H, Wang Y, Xia T, Lv X, Park J, Peng H, Mavrikakis M, Xia Y (2015) ChemCatChem 7:2077–2084

    Article  CAS  Google Scholar 

  52. Scaranto J, Mavrikakis M (2016) Surf Sci 648:201–211

    Article  CAS  Google Scholar 

  53. Cárdenas-Lizana F, Berguerand C, Yuranov I, Kiwi-Minsker L (2013) J Catal 301:103–111

    Article  Google Scholar 

  54. Schimmenti R, Cortese R, Ferrante F, Prestianni A, Duca D (2016) Phys Chem Chem Phys 18:1750–1757

    Article  CAS  Google Scholar 

  55. Cortese R, Schimmenti R, Ferrante F, Prestianni A, Decarolis D, Duca D (2017) J Phys Chem C 121(25):13606–13616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by the POLYCAT project (Modern polymer-based catalysts and microflow conditions as key elements of innovations in fine chemical synthesis), funded by the 7th Framework Programme of the European Community; GA: CP-IP 246095; http://polycat-fp7.eu/ and by the SusFuelCat project (Sustainable fuel production by aqueous phase reforming–understanding catalysis and hydrothermal stability of carbon supported noble metals), funded by the 7th Framework Programme of the European Community; GA: CP-IP 310490; http://cordis.europa.eu/projects/rcn/106702_en.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Duca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortese, R., Schimmenti, R., Prestianni, A. et al. DFT calculations on subnanometric metal catalysts: a short review on new supported materials. Theor Chem Acc 137, 59 (2018). https://doi.org/10.1007/s00214-018-2236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2236-x

Keywords

Navigation