Skip to main content
Log in

The optical properties of adenine cation in different oligonucleotides: a PCM/TD-DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The absorption spectra of several systems containing an adenine (A) cation are computed in water by TD-DFT calculations, using three different functionals and including solvent effects by a mixed discrete–continuum approach. Our calculations well reproduce the experimental absorption spectrum of deoxyadenosine nucleoside cation (dA+), which provides an intense peak at 350 nm and a weaker one at 600 nm, allowing its assignment. M052X and CAM-B3LYP predict that the hole is essentially localized on a single A base also in the cationic forms of dApdA dinucleotide, both in single and in double strand, and of (dApdT) duplex, exhibiting absorption spectra similar to that of dA+. For all these compounds, B3LYP predicts instead the delocalization of the hole over two A bases. On this ground, it is possible to propose which would be the spectral signature of partial hole delocalization. Vertical and adiabatic ionization potentials for the compounds under investigation are also computed, providing values in good agreement with the available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ponseca CS, Chábera P, Uhlig J, Persson P, Sundström V (2017) Ultrafast electron dynamics in solar energy conversion. Chem Rev 117(16):10940–11024

    Article  CAS  Google Scholar 

  2. Barber J, Tran PD (2013) From natural to artificial photosynthesis. J R Soc Interface 10(81):20120984

    Article  Google Scholar 

  3. Dadashi-Silab S, Doran S, Yagci Y (2016) Photoinduced electron transfer reactions for macromolecular syntheses. Chem Rev 116(17):10212–10275

    Article  CAS  Google Scholar 

  4. D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41(1):86–96

    Article  Google Scholar 

  5. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44(10):3117–3142

    Article  CAS  Google Scholar 

  6. Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Acc Chem Res 48(5):1358–1368

    Article  CAS  Google Scholar 

  7. Banyasz A, Ketola T-M, Muñoz-Losa A, Rishi S, Adhikary A, Sevilla MD, Martinez-Fernandez L, Improta R, Markovitsi D (2016) UV-induced adenine radicals induced in DNA A-tracts: spectral and dynamical characterization. J Phys Chem Lett 7(19):3949–3953

    Article  CAS  Google Scholar 

  8. Marguet S, Markovitsi D, Talbot F (2006) One- and two-photon ionization of DNA single and double helices studied by laser flash photolysis at 266 nm. J Phys Chem B 110(23):11037–11039

    Article  CAS  Google Scholar 

  9. Crespo-Hernández CE, Arce R (2003) Near threshold photo-oxidation of dinucleotides containing purines upon 266 nm nanosecond laser excitation. The role of base stacking, conformation, and sequence. J Phys Chem B 107(4):1062–1070

    Article  Google Scholar 

  10. Banyasz A, Martínez-Fernández L, Balty C, Perron M, Douki T, Improta R, Markovitsi D (2017) Absorption of low-energy UV radiation by human telomere G-quadruplexes generates long-lived guanine radical cations. J Am Chem Soc 139(30):10561–10568

    Article  CAS  Google Scholar 

  11. Banyasz A, Ketola T-MC, Martinez-Fernandez L, Improta R, Markovitsi D (2017) Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation. Faraday Discuss

  12. Schroeder CA, Pluhařová E, Seidel R, Schroeder WP, Faubel M, Slavicek P, Winter B, Jungwirth P, Bradforth SE (2015) Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations. J Am Chem Soc 137(1):201–209

    Article  CAS  Google Scholar 

  13. Martinez-Fernandez L, Zhang Y, de La Harpe K, Beckstead AA, Kohler B, Improta R (2016) Photoinduced long-lived charge transfer excited states in AT-DNA strands. Phys Chem Chem Phys 18(31):21241–21245

    Article  CAS  Google Scholar 

  14. Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B (2015) UV-induced proton transfer between DNA strands. J Am Chem Soc 137(22):7059–7062

    Article  CAS  Google Scholar 

  15. Zhang Y, de La Harpe K, Beckstead AA, Martínez-Fernández L, Improta R, Kohler B (2016) Excited-state dynamics of DNA duplexes with different H-bonding motifs. J Phys Chem Lett 7(6):950–954

    Article  CAS  Google Scholar 

  16. Zhang Y, Dood J, Beckstead AA, Li XB, Nguyen KV, Burrows CJ, Improta R, Kohler B (2014) Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proc Natl Acad Sci 111(32):11612–11617

    Article  CAS  Google Scholar 

  17. Bucher DB, Pilles BM, Carell T, Zinth W (2014) Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc Natl Acad Sci 111(12):4369–4374

    Article  CAS  Google Scholar 

  18. Pilles BM, Bucher DB, Liu LZ, Gilch P, Zinth W, Schreier WJ (2014) Identification of charge separated states in thymine single strands. Chem Commun 50(98):15623–15626

    Article  CAS  Google Scholar 

  19. Doorley GW, McGovern DA, George MW, Towrie M, Parker AW, Kelly JM, Quinn SJ (2009) Picosecond transient infrared study of the ultrafast deactivation processes of electronically Excited B-DNA and Z-DNA forms of [poly(dG-dC)]2. Ang Chem Int Ed 48(1):123–127

    Article  CAS  Google Scholar 

  20. Doorley GW, Wojdyla M, Watson GW, Towrie M, Parker AW, Kelly JM, Quinn SJ (2013) Tracking DNA excited states by picosecond-time-resolved infrared spectroscopy: signature band for a charge-transfer excited state in stacked adenine-thymine systems. J Phys Chem Lett 4(16):2739–2744

    Article  CAS  Google Scholar 

  21. Keane PM, Wojdyla M, Doorley GW, Kelly JM, Parker AW, Clark IP, Greetham GM, Towrie M, Magno LM, Quinn SJ (2014) Long-lived excited states in i-motif DNA studied by picosecond time-resolved IR spectroscopy. Chem Commun 50(23):2990–2992

    Article  CAS  Google Scholar 

  22. Kawai K, Majima T (2013) Hole transfer kinetics of DNA. Acc Chem Res 46(11):2616–2625

    Article  CAS  Google Scholar 

  23. Vura-Weis J, Wasielewski MR, Thazhathveetil AK, Lewis FD (2009) Efficient charge transport in DNA diblock oligomers. J Am Chem Soc 131(28):9722–9727

    Article  CAS  Google Scholar 

  24. Renaud N, Harris MA, Singh APN, Berlin YA, Ratner MA, Wasielewski MR, Lewis FD, Grozema FC (2016) Deep-hole transfer leads to ultrafast charge migration in DNA hairpins. Nat Chem 8:1015

    Article  CAS  Google Scholar 

  25. Slinker JD, Muren NB, Renfrew SE, Barton JK (2011) DNA charge transport over 34 nm. Nat Chem 3(3):228–233

    Article  CAS  Google Scholar 

  26. Choi J, Park J, Tanaka A, Park MJ, Jang YJ, Fujitsuka M, Kim SK, Majima T (2013) Hole trapping of G-quartets in a G-quadruplex. Ang Chem Int Ed 52(4):1134–1138

    Article  CAS  Google Scholar 

  27. Thazhathveetil AK, Harris MA, Young RM, Wasielewski MR, Lewis FD (2017) Efficient charge transport via DNA G-quadruplexes. J Am Chem Soc 139(5):1730–1733

    Article  CAS  Google Scholar 

  28. Roca-Sanjuán D, Merchán M, Serrano-Andrés L (2008) Modeling hole transfer in DNA: low-lying excited states of oxidized cytosine homodimer and cytosine–adenine heterodimer. Chem Phys 349(1):188–196

    Article  Google Scholar 

  29. Arnold Anna R, Grodick Michael A, Barton Jacqueline K (2016) DNA charge transport: from chemical principles to the cell. Cell Chem Biol 23(1):183–197

    Article  CAS  Google Scholar 

  30. Genereux JC, Barton JK (2010) Mechanisms for DNA charge transport. Chem Rev 110(3):1642–1662

    Article  CAS  Google Scholar 

  31. Wagenknecht H-A (ed) (2006) Charge transfer in DNA: from mechanism to application. Wiley-VCH, Weinheim

    Google Scholar 

  32. Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731

    Article  CAS  Google Scholar 

  33. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ, Barton JK (1993) Long-range photoinduced electron transfer through a DNA helix. Science 262(5136):1025

    Article  CAS  Google Scholar 

  34. Adhikary A, Khanduri D, Sevilla MD (2009) Direct observation of the hole protonation state and hole localization site in DNA-oligomers. J Am Chem Soc 131(24):8614–8619

    Article  CAS  Google Scholar 

  35. Adhikary A, Kumar A, Khanduri D, Sevilla MD (2008) Effect of base stacking on the acid–base properties of the adenine cation radical [A· +] in solution: ESR and DFT studies. J Am Chem Soc 130(31):10282–10292

    Article  CAS  Google Scholar 

  36. Kumar A, Sevilla MD (2011) Density functional theory studies of the extent of hole delocalization in one-electron oxidized adenine and guanine base stacks. J Phys Chem B 115(17):4990–5000

    Article  CAS  Google Scholar 

  37. Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR (2000) Direct measurement of hole transport dynamics in DNA. Nature 406:51

    Article  CAS  Google Scholar 

  38. Capobianco A, Caruso T, Peluso A (2015) Hole delocalization over adenine tracts in single stranded DNA oligonucleotides. Phys Chem Chem Phys 17(6):4750–4756

    Article  CAS  Google Scholar 

  39. Capobianco A, Peluso A (2014) The oxidization potential of AA steps in single strand DNA oligomers. RSC Adv 4(88):47887–47893

    Article  CAS  Google Scholar 

  40. Capobianco A, Caruso T, D’Ursi AM, Fusco S, Masi A, Scrima M, Chatgilialoglu C, Peluso A (2015) Delocalized hole domains in guanine-rich DNA oligonucleotides. J Phys Chem B 119(17):5462–5466

    Article  CAS  Google Scholar 

  41. Capobianco A, Caruso T, Celentano M, D’Ursi AM, Scrima M, Peluso A (2013) Stacking interactions between adenines in oxidized oligonucleotides. J Phys Chem B 117(30):8947–8953

    Article  CAS  Google Scholar 

  42. Adhikary A, Khanduri D, Kumar A, Sevilla MD (2008) Photo-excitation of Adenine cation radical [A·(+)] in the near UV–Vis region produces sugar radicals in Adenosine and in its nucleotides. J Phys Chem B 112(49):15844–15855

    Article  CAS  Google Scholar 

  43. Candeias LP, Steenken S (1992) Ionization of purine nucleosides and nucleotides and their components by 193-nm laser photolysis in aqueous solution: model studies for oxidative damage of DNA. J Am Chem Soc 114(2):699–704

    Article  CAS  Google Scholar 

  44. von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer, Berlin

    Book  Google Scholar 

  45. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  46. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  47. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theor Comput 2(2):364–382

    Article  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  CAS  Google Scholar 

  49. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  50. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  51. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127(7):074504

    Article  Google Scholar 

  52. Pluhařová E, Jungwirth P, Bradforth SE, Slavíček P (2011) Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: from the gas phase to the aqueous environment. J Phys Chem B 115(5):1294–1305

    Article  Google Scholar 

  53. Muñoz-Losa A, Markovitsi D, Improta R (2015) A state-specific PCM–DFT method to include dynamic solvent effects in the calculation of ionization energies: application to DNA bases. Chem Phys Lett 634(Supplement C):20–24

    Article  Google Scholar 

  54. Frisch MJ et al (2009) Gaussian 09, revision A.1. Gaussian, Inc.,Wallingford

  55. Lavery R, Zakrzewska K, Sklenar H (1995) JUMNA (junction minimisation of nucleic acids). Comput Phys Commun 91(1):135–158

    Article  CAS  Google Scholar 

  56. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  57. Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92(11):3817–3829

    Article  Google Scholar 

  58. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  59. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  60. Lavery R, Zakrzewska K, Beveridge D, Bishop TC, Case DA, Cheatham T, Dixit S, Jayaram B, Lankas F, Laughton C, Maddocks JH, Michon A, Osman R, Orozco M, Perez A, Singh T, Spackova N, Sponer J (2010) A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucl Acids Res 38(1):299–313

    Article  CAS  Google Scholar 

  61. Esposito L, Banyasz A, Douki T, Perron M, Markovitsi D, Improta R (2014) Effect of C5-methylation of cytosine on the photoreactivity of DNA: a joint experimental and computational study of TCG trinucleotides. J Am Chem Soc 136:10838–10841

    Article  CAS  Google Scholar 

  62. Dixit SB, Beveridge DL, Case DA, Cheatham TE, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Sklenar H, Thayer KM, Varnai P (2005) Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys J 89(6):3721–3740

    Article  CAS  Google Scholar 

  63. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  64. Pluhařová E, Slavicek P, Jungwirth P (2015) Modeling photoionization of aqueous DNA and its components. Acc Chem Res 48(5):1209–1217

    Article  Google Scholar 

  65. Roca-Sanjuán D, Rubio M, Merchán M, Serrano-Andrés L (2006) Ab initio determination of the ionization potentials of DNA and RNA nucleobases. J Chem Phys 125(8):084302

    Article  Google Scholar 

  66. Barbatti M, Ullrich S (2011) Ionization potentials of adenine along the internal conversion pathways. Phys Chem Chem Phys 13(34):15492–15500

    Article  CAS  Google Scholar 

  67. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  Google Scholar 

  68. Pluhařová E, Schroeder C, Seidel R, Bradforth SE, Winter B, Faubel M, Slavíček P, Jungwirth P (2013) Unexpectedly small effect of the DNA environment on vertical ionization energies of aqueous nucleobases. J Phys Chem Lett 4(21):3766–3769

    Article  Google Scholar 

  69. Ferrer FJA, Cerezo J, Stendardo E, Improta R, Santoro F (2013) Insights for an accurate comparison of computational data to experimental absorption and emission spectra: beyond the vertical transition approximation. J Chem Theor Comput 9(4):2072–2082

    Article  Google Scholar 

  70. Avila Ferrer FJ, Cerezo J, Soto J, Improta R, Santoro F (2014) First-principle computation of absorption and fluorescence spectra in solution accounting for vibronic structure, temperature effects and solvent inhomogeneous broadening. Comput Theor Chem 1040–1041(Supplement C):328–337

    Article  Google Scholar 

  71. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105(11):4009–4037

    Article  CAS  Google Scholar 

  72. Donati G, Lingerfelt DB, Petrone A, Rega N, Li X (2016) “Watching” polaron pair formation from first-principles electron-nuclear dynamics. J Phys Chem A 120(37):7255–7261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNRS-CNR PICS project (No. 6827-2015)/Bilateral CNR/CNRS for financial support. R.I. thanks the Université Paris-Saclay (Chaire d’Alembert No. 2016-10751). L.M-F thanks the ‘OSPEG’ LABEX PALM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Improta.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Rizzo”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Fernandez, L., Muñoz-Losa, A., Esposito, L. et al. The optical properties of adenine cation in different oligonucleotides: a PCM/TD-DFT study. Theor Chem Acc 137, 39 (2018). https://doi.org/10.1007/s00214-018-2223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2223-2

Keywords

Navigation