Skip to main content

Advertisement

Log in

Core excitations of the solid oxygen ε phase: periodic hybrid density functional theory studies with localized atomic basis

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ε and the superconducting ζ oxygen phases at high pressures consist of (O2)4 cuboid unit cells. Previous lattice optimizations and vibrational calculations with periodic hybrid density functional theory using atomic basis sets addressed the evolution of the lattice parameters, Raman and infrared spectra as well as the εζ phase transition pressure; in all cases, the results found with hybrid exchange–correlation (XC) functionals are in excellent agreement with experiments. We address here the evolution of the core 1sσ u * and 1s–1π g * transitions for the low-pressure regime of the ε phase with GGA and hybrid-type XC functionals. Again, hybrid XC functionals yield a better agreement with K-edge results for the pressure evolution in the 10–40 GPa range for which experimental data are available. However, a slower dependence of the 1π g * excitation with pressure is found with respect to experimental data, irrespective of whether a GGA or hybrid-type XC functional is used. We provide arguments to explain the poorer theoretical description for the 1π g * excitation as arising from the rather strong multireference character of the unit cell singlet wavefunction in the low-pressure regime. Some general conclusions are drawn concerning the accuracy of hybrid versus GGA-type exchange correlation functionals for this complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Freiman YA, Jodl JH (2004) Phys Rep 401:1

    Article  CAS  Google Scholar 

  2. Akahama Y, Kawamura H, Shimomura O (2001) Phys Rev B 64:054105

    Article  Google Scholar 

  3. Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690

    Article  CAS  Google Scholar 

  4. Fujihisa H, Akahama Y, Kawamura H, Ohishi Y, Shimomura O, Yamawaki H, Sakashita M, Gotoh Y, Takeya S, Honda K (2006) Phys Rev Lett 97:085503

    Article  Google Scholar 

  5. Lundergaard LF, Weck G, McMahon MI, Desgreniers S, Loubeyre P (2006) Nature 443:201

    Article  Google Scholar 

  6. Shimizu K, Suhara K, Ikumo M, Amaya K (1998) Nature 393:767

    Article  CAS  Google Scholar 

  7. Weck G, Desgreniers S, Loubeyre P, Mezoua M (2009) Phys Rev Lett 102:255503

    Article  CAS  Google Scholar 

  8. Serra S, Chiarotti G, Scandolo S, Tosatti E (1998) Phys Rev Lett 80:5160

    Article  CAS  Google Scholar 

  9. Neaton JB, Ashcroft NW (2002) Phys Rev Lett 88:205503

    Article  CAS  Google Scholar 

  10. Oganov AR, Glass CW (2006) J Chem Phys 124:244704

    Article  Google Scholar 

  11. Ma Y, Oganov AR, Glass CW (2007) Phys Rev B. 76:064101

    Article  Google Scholar 

  12. Kim DY, Lebègue S, Moysés Araújo C, Arnaud B, Alouani M, Ahuja R (2008) Phys Rev B. 77:092104

    Article  Google Scholar 

  13. Militzer B, Hemley RJ (2006) Nature 443:150

    Article  CAS  Google Scholar 

  14. Ochoa-Calle AJ, Zicovich-Wilson CM, Hernández-Lamoneda R, Ramírez-Solís A (2015) J Chem Theory Comput 11:1195

    Article  CAS  Google Scholar 

  15. Bartolomei M, Carmona-Novillo E, Hernández MI, Pérez-Ríos J, Campos-Martínez J, Hernández-Lamoneda R (2011) Phys Rev B 84:092105

    Article  Google Scholar 

  16. García-Revilla MA, Francisco E, Martín-Pendás A, Recio JM, Bartolomei M, Hernández MI, Campos-Martínez J, Carmona-Novillo E, Hernández-Lamoneda R (2013) J Chem Theory Comput 9:2179

    Article  Google Scholar 

  17. Ochoa-Calle AJ, Zicovich-Wilson CM, Ramírez-Solís A (2015) Phys Rev B 92:85148

    Article  Google Scholar 

  18. Chaudhury R, Das MP (2013) J Phys: Condens Matter 25:122202

    CAS  Google Scholar 

  19. Ochoa-Calle AJ, Zicovich-Wilson CM, Ramírez-Solís A (2015) Chem Phys Lett 638:82

    Article  CAS  Google Scholar 

  20. Ramírez-Solís A, Zicovich-Wilson CM, Hernández-Lamoneda R, Ochoa-Calle AJ (2017) Phys Chem Chem Phys 19:2826

    Article  Google Scholar 

  21. Crespo Y, Fabrizio M, Scandolo S, Tosatti E (2014) Proc Natl Acad Sci USA 111:10427

    Article  CAS  Google Scholar 

  22. Meng Y, Eng PJ, Tse JS, Shaw DM, Hu MY, Shu J, Gramsch SA, Kao C, Hamley RJ, Mao H (2008) Proc Natl Acad Sci USA 105:11640

    Article  CAS  Google Scholar 

  23. Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  24. Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush IJ, D’Arco Ph, Llunell M (2014) CRYSTAL2014 user’s manual. Universitá di Torino, Torino, Italia. http://www.crystal.unito.it

Download references

Acknowledgements

ARS and RHL thank CONACYT through Basic Science projects 253679 and 167921. AJOC thanks a postdoctoral fellowship from Fondo Sectorial CONACYT-Secretaría de Energía Sustentabilidad Energética (SENER) through project No. 2016-2017 2o. Corte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ramírez-Solís.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Solís, A., Ochoa-Calle, A.J. & Hernández-Lamoneda, R. Core excitations of the solid oxygen ε phase: periodic hybrid density functional theory studies with localized atomic basis. Theor Chem Acc 137, 32 (2018). https://doi.org/10.1007/s00214-018-2213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2213-4

Keywords

Navigation