Skip to main content
Log in

Stability of formic acid/pyridine and isonicotinamide/formamide cocrystals by molecular dynamics simulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A cocrystal is a system with at least two components that can be solids or liquids at room conditions. The molecules in a cocrystal interact by hydrogen bonds producing a new crystal that has different properties than the original compounds and also improved physicochemical properties. In this work, we study by molecular dynamics simulations the formic acid/pyridine and the isonicotinamide/formamide cocrystals at 173 and 150 K, respectively. Except isonicotinamide that is a solid, the rest of molecules are liquids at ambient conditions. The OPLS/AA force field is used with two sets of parameters for the liquids: (a) the original set obtained by matching the simulations results to experimental density and heat of vaporization at room conditions and (b) new values that reproduce the dielectric constant, surface tension and density at different temperatures. The parameters of pyridine and formamide have been published previously by our group (Salas et al. in J Chem Theory Comput 11(2):683, 2015). The liquid formic acid is parameterized in this work using the same procedure. The new parameters improved the predictions of the original values. The isonicotinamide parameters are obtained from those of pyridine and formamide assuming they are transferable. The structure and stability of cocrystals are determined through the calculation of distances and angles of atoms that form hydrogen bonds in different molecules. The simulation results are compared with experimental measurements of X-ray diffraction, and a good agreement is found. Although the new parameters for the liquids give simulation results of thermodynamic properties in better agreement with experimental data at different temperatures and pressures, the cocrystal results are essentially the same as those obtained using the original values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lipinski CA (2002) Am Pharm Rev 5(3):82–85

    Google Scholar 

  2. Serajuddin ATM (2007) Adv Drug Deliv Rev 59(7):603–616

    Article  CAS  Google Scholar 

  3. Fahr A, Douroumis D (2013) Drug delivery strategies for poorly water-soluble drugs. Wiley, New York

    Google Scholar 

  4. Huang NC (2011) Engineering cocrystal solubility and stability via ionization and micellar solubilization, Ph.D. Thesis. University of Michigan, Ann Arbor

  5. Guo D, An Q, Goddard WA III, Zybin SV, Huang FJ (2014) Phys Chem C 118(51):30202–30208

    Article  CAS  Google Scholar 

  6. Zhang H, Gou C, Wang X, Xu J, He X, Liu Y, Liu X, Huang H, Sun J (2013) Cryst Growth Des 13(2):679–687

    Article  Google Scholar 

  7. Xiong S, Chen S, Jin S, Zhang C (2016) RSC Adv 6:4221–4226

    Article  CAS  Google Scholar 

  8. Bennion JC, Vogt L, Tuckerman ME, Matzger AJ (2016) Cryst Growth Des 16:4688–4693

    Article  CAS  Google Scholar 

  9. Kirchner B, Vrabec J (eds) (2012) Multiscale molecular methods in applied chemistry. Topics in current chemistry, vol 307. Springer, Berlin

    Google Scholar 

  10. Ryckaert JP, Bellemans A (1978) Faraday Discuss Chem Soc 10(66):95–106

    Article  Google Scholar 

  11. Martin MG, Siepmann JI (1998) J Phys Chem B 102:2569–2577

    Article  CAS  Google Scholar 

  12. Martin MG, Siepmann JI (1999) J Phys Chem B 103:4508–4517

    Article  CAS  Google Scholar 

  13. García-Sánchez A, Ania CO, Parra JB, Dubbeldam D, Vlugt TJH, Krishna R, Calero SJ (2009) Phys Chem C 113:8814–8820

    Article  Google Scholar 

  14. Bristow JK, Tiana D, Walsh AJ (2014) Chem Theory Comput 10:4644–4652

    Article  CAS  Google Scholar 

  15. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  16. Wang J, Wolf RM, Caldwell JW, Kollman PA (2004) J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  17. Jorgensen WL, Swenson C (1985) J Am Chem Soc 107(3):569–578

    Article  CAS  Google Scholar 

  18. van Leeuwen ME, Smit B (1995) J Phys Chem 99(7):1831–1833

    Article  Google Scholar 

  19. Salas FJ, Méndez-Maldonado GA, Núñez-Rojas E, Aguilar-Pineda GE, Domínguez H, Alejandre J (2015) J Chem Theory Comput 11(2):683–693

    Article  CAS  Google Scholar 

  20. Pérez de la Luz A, Méndez-Maldonado GA, Núñez-Rojas E, Bresme F, Alejandre J (2015) J Chem Theory Comput 11(6):2792–2800

    Article  Google Scholar 

  21. Aguilar-Pineda JA, Méndez-Maldonado GA, Núñez-Rojas E, Alejandre J (2015) J Mol Phys 113(17):2716–2724

    Article  CAS  Google Scholar 

  22. Fuentes-Azcatl R, Alejandre J (2014) J Phys Chem B 118:1263–1272

    Article  CAS  Google Scholar 

  23. Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) J Chem Theory Comput 8(1):61–74

    Article  CAS  Google Scholar 

  24. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  25. Grazulis S, Daskevic A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Nucleic Acids Res 10(40):D420–7

    Article  Google Scholar 

  26. Lide DR (2009) CRC handbook of chemistry and physics, 90th edn. CRC Press, Cleveland

    Google Scholar 

  27. Roy AK, Thakkar AJ (2005) Chem Phys 312:119–126

    Article  CAS  Google Scholar 

  28. Wiechert D, Mootz D (1999) Angew Chem Int Ed 38:1974–1976

    Article  CAS  Google Scholar 

  29. Oswald IDH, Motherwell WDS, Parsons S (2005) Acta Cryst E 61(10):O3161–O3163

    Article  CAS  Google Scholar 

  30. Briggs JM, Nguyen TB, Jorgensen WL (1991) J Phys Chem 95:3315–3322

    Article  CAS  Google Scholar 

  31. Schnabel T, Cortada M, Vrabec J, Lago S, Hasse H (2007) Chem Phys Lett 435:268–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the allocation of computer time to Laboratorio de Supercómputo, UAM-Iztapalapa. We thank also Jorge Balmaseda for helpful discussions and comments. ENR and FJS thank Conacyt for postdoctoral and Ph.D. scholarships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alejandre.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas, F.J., Núñez-Rojas, E. & Alejandre, J. Stability of formic acid/pyridine and isonicotinamide/formamide cocrystals by molecular dynamics simulations. Theor Chem Acc 136, 17 (2017). https://doi.org/10.1007/s00214-016-2024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2024-4

Keywords

Navigation