Skip to main content
Log in

A Monte Carlo–quantum mechanics study of a solvatochromic π* probe

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The solvation and the solvatochromic behavior of 5-(dimethylamino)-5′-nitro-2,2′-bithiophene 1, the basis of a π* scale of solvent polarities, was investigated theoretically in toluene, dichloromethane, methanol and formamide with a Monte Carlo and quantum mechanics (QM/MM) iterative approach. The calculated transition energies of the solvatochromic band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first solvation layer, besides showing good agreement with the experimental transitions, reproduced very well the positive solvatochromism of this probe in various solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358. doi:10.1021/cr00032a005

    Article  CAS  Google Scholar 

  2. Reichardt C, Welton T (2010) Solvent effects on the absorption spectra of organic compounds. Chaper 6 in. Solvents and solvent effects in organic chemistry, 4 edn. Wiley-VCH, Weinheim, pp 359–424. doi:10.1002/9783527632220.ch6

  3. Adegoke OA (2011) Relative predominance of azo and hydrazone tautomers of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes in binary solvent mixtures. Spectrochim Acta A Mol Biomol Spectrosc 83(1):504–510. doi:10.1016/j.saa.2011.08.075

    Article  CAS  Google Scholar 

  4. Green AM, Naughton HR, Nealy ZB, Pike RD, Abelt CJ (2013) Carbonyl-twisted 6-acyl-2-dialkylaminonaphthalenes as solvent acidity sensors. J Org Chem 78(5):1784–1789. doi:10.1021/jo301263g

    Article  CAS  Google Scholar 

  5. Nandi LG, Facin F, Marini VG, Zimmermann LM, Giusti LA, Rd S, Caramori GF, Machado VG (2012) Nitro-substituted 4-[(phenylmethylene)imino]phenolates: solvatochromism and their use as solvatochromic switches and as probes for the investigation of preferential solvation in solvent mixtures. J Org Chem 77(23):10668–10679. doi:10.1021/jo301890r

    Article  CAS  Google Scholar 

  6. Navarro AM, García B, Hoyuelos FJ, Peñacoba IA, Leal JM (2011) Preferential solvation in alkan-1-ol/alkylbenzoate binary mixtures by solvatochromic probes. J Phys Chem B 115(34):10259–10269. doi:10.1021/jp202019x

    Article  CAS  Google Scholar 

  7. Papadakis R, Tsolomitis A (2011) Solvatochromism and preferential solvation of 4-pentacyanoferrate 4′-aryl substituted bipyridinium complexes in binary mixtures of hydroxylic and non-hydroxylic solvents. J Solut Chem 40(6):1108–1125. doi:10.1007/s10953-011-9697-z

    Article  CAS  Google Scholar 

  8. Salari H, Khodadadi-Moghaddam M, Harifi-Mood AR, Gholami MR (2010) Preferential solvation and behavior of solvatochromic indicators in mixtures of an ionic liquid with some molecular solvents. J Phys Chem B 114(29):9586–9593. doi:10.1021/jp103476a

    Article  CAS  Google Scholar 

  9. Sato BM, Martins CT, El Seoud OA (2012) Solvation in aqueous binary mixtures: consequences of the hydrophobic character of the ionic liquids and the solvatochromic probes. New J Chem 36(11):2353–2360. doi:10.1039/C2NJ40506G

    Article  CAS  Google Scholar 

  10. Díaz C, Barrio L, Catalán J (2003) Characterization of ternary solvent mixtures: the methanol/ethanol/acetone mixture. Chem Phys Lett 371(5–6):645–654. doi:10.1016/S0009-2614(03)00319-1

    Article  Google Scholar 

  11. Maitra A, Bagchi S (2008) UV-visible spectroscopic study of solvation in ternary solvent mixtures: ketocyanine dye in methanol + acetone + water and methanol + acetone + benzene. J Phys Chem B 112(7):2056–2062. doi:10.1021/jp709819n

    Article  CAS  Google Scholar 

  12. Maitra A, Bagchi S (2008) Electronic spectroscopic study of solvation of a ketocyanine dye in ternary solvent mixtures. J Phys Chem B 112(32):9847–9852. doi:10.1021/jp710874e

    Article  CAS  Google Scholar 

  13. Ray N, Bagchi S (2005) Use of a solvatochromic probe for study of solvation in ternary solvent mixture. J Phys Chem A 109(1):142–147. doi:10.1021/jp0456741

    Article  CAS  Google Scholar 

  14. Ray N, Bagchi S (2004) Fluorimetric study of solvation in ternary solvent mixtures. Ketocyanine dye in ethanol+benzene+water and ethanol+benzene+acetone. J Mol Liq 111(1–3):19–24. doi:10.1016/j.molliq.2003.09.018

    Article  CAS  Google Scholar 

  15. Durantini AM, Falcone RD, Silber JJ, Correa NM (2011) A new organized media: glycerol:N, N-dimethylformamide mixtures/AOT/n-heptane reversed micelles. The effect of confinement on preferential solvation. J Phys Chem B 115(19):5894–5902. doi:10.1021/jp1123822

    Article  CAS  Google Scholar 

  16. Karukstis KK, Litz JP, Garber MB, Angell LM, Korir GK (2010) A spectral approach to determine location and orientation of azo dyes within surfactant aggregates. Spectrochim Acta A Mol Biomol Spectrosc 75(4):1354–1361. doi:10.1016/j.saa.2009.12.087

    Article  Google Scholar 

  17. Quintana SS, Falcone RD, Silber JJ, Correa NM (2012) Comparison between two anionic reverse micelle interfaces: the role of water–surfactant interactions in interfacial properties. ChemPhysChem 13(1):115–123. doi:10.1002/cphc.201100638

    Article  CAS  Google Scholar 

  18. Rezende MC, Oñate R, Núñez G, Domínguez M, Mascayano C (2009) Lipophilic contributions to the solvatochromism of analogous betaines. Dyes Pigments 83(3):391–395. doi:10.1016/j.dyepig.2009.06.011

    Article  CAS  Google Scholar 

  19. Vaz Serra V, Andrade SM, Silva EMP, Silva AMS, Neves MGPMS, Costa SMB (2013) Structural effects of the β-vinyl linker in pyridinium porphyrins: spectroscopic studies in organic solvents and AOT reverse micelles. J Phys Chem B 117(48):15023–15032. doi:10.1021/jp4076993

    CAS  Google Scholar 

  20. Milosevic P, Hecht S (2005) Design of branched and chiral solvatochromic probes: toward quantifying polarity gradients in dendritic macromolecules. Org Lett 7(22):5023–5026. doi:10.1021/ol0519902

    Article  CAS  Google Scholar 

  21. Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S, Lee SJ, Grinstaff MW (2003) Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 125(50):15485–15489. doi:10.1021/ja0347383

    Article  CAS  Google Scholar 

  22. Richter-Egger DL, Landry JC, Tesfai A, Tucker SA (2001) Spectroscopic investigations of polyamido amine starburst dendrimers using the solvatochromic probe phenol blue. J Phys Chem A 105(28):6826–6833. doi:10.1021/jp0100396

    Article  CAS  Google Scholar 

  23. Richter-Egger DL, Tesfai A, Tucker SA (2001) Spectroscopic investigations of poly(propyleneimine)dendrimers using the solvatochromic probe phenol blue and comparisons to poly(amidoamine) dendrimers. Anal Chem 73(23):5743–5751. doi:10.1021/ac0155355

    Article  CAS  Google Scholar 

  24. Jara F, Domínguez M, Rezende MC (2006) The interaction of solvatochromic pyridiniophenolates with cyclodextrins. Tetrahedron 62(33):7817–7823. doi:10.1016/j.tet.2006.05.053

    Article  CAS  Google Scholar 

  25. Mati SS, Sarkar S, Sarkar P, Bhattacharya SC (2012) Explicit spectral response of the geometrical isomers of a bio-active pyrazoline derivative encapsulated in β-cyclodextrin nanocavity: a photophysical and quantum chemical analysis. J Phys Chem A 116(42):10371–10382. doi:10.1021/jp307964z

    Article  CAS  Google Scholar 

  26. Naughton HR, Abelt CJ (2013) Local solvent acidities in β-cyclodextrin complexes with PRODAN derivatives. J Phys Chem B 117(12):3323–3327. doi:10.1021/jp400765x

    Article  CAS  Google Scholar 

  27. Nicolini J, Venturini CG, Andreaus J, Machado C, Machado VG (2008) Interaction of cyclodextrins with Brooker’s merocyanine in aqueous solution. Spectrosc Lett 42(1):35–41. doi:10.1080/00387010802425142

    Article  Google Scholar 

  28. Sarkar A, Kedia N, Purkayastha P, Bagchi S (2011) Synthesis and spectroscopic investigation of a novel solvatochromic dye. J Lumin 131(8):1731–1738. doi:10.1016/j.jlumin.2011.04.008

    Article  CAS  Google Scholar 

  29. Tirapegui C, Jara F, Guerrero J, Rezende MC (2006) Host–guest interactions in cyclodextrin inclusion complexes with solvatochromic dyes. J Phys Org Chem 19(11):786–792. doi:10.1002/poc.1080

    Article  CAS  Google Scholar 

  30. Beckford G, Owens E, Henary M, Patonay G (2012) The solvatochromic effects of side chain substitution on the binding interaction of novel tricarbocyanine dyes with human serum albumin. Talanta 92:45–52. doi:10.1016/j.talanta.2012.01.029

    Article  CAS  Google Scholar 

  31. Kanski R, Murray CJ (1993) Enzymichromism: determination of the dielectric properties of an enzyme active site. Tetrahedron Lett 34(14):2263–2266. doi:10.1016/S0040-4039(00)77589-7

    Article  CAS  Google Scholar 

  32. Khan F, Pickup JC (2013) Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-blue oxazine. Biochem Biophys Res Commun 438(3):488–492. doi:10.1016/j.bbrc.2013.07.111

    Article  CAS  Google Scholar 

  33. Prifti E, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K (2014) A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule nile red. ACS Chem Biol 9(3):606–612. doi:10.1021/cb400819c

    Article  CAS  Google Scholar 

  34. Rezende MC, Dominguez M, Aracena A (2012) The positive halochromism of phenolate dyes in hydroxylic solutions of tetraalkylammonium cations. Spectrochim Acta A Mol Biomol Spectrosc 87:61–66. doi:10.1016/j.saa.2011.11.010

    Article  CAS  Google Scholar 

  35. Laus G, Schottenberger H, Wurst K, Schutz J, Ongania K-H, Horvath UEI, Schwarzler A (2003) Solvatochromism, halochromism, and preferential solvation of new dipolar guaiazulenyl 1,4-benzoquinone methides. Org Biomol Chem 1(8):1409–1418. doi:10.1039/B209555F

    Article  CAS  Google Scholar 

  36. Rezende MC, Aracena A (2012) In search of the thermo/halochromism of the ET(30) pyridinium-N-phenolate betaine dye. Spectrochim Acta A Mol Biomol Spectrosc 98:18–22. doi:10.1016/j.saa.2012.08.032

    Article  CAS  Google Scholar 

  37. Rezende MC, Oñate R, Domínguez M, Millán D (2009) Solvatochromism and halochromism of N-(4-Oxyphenyl) 5-nitro-2-thiophenecarboxaldimine. Spectrosc Lett 42(2):81–86. doi:10.1080/00387010802428617

    Article  CAS  Google Scholar 

  38. Zanotto SP, Scremin M, Machado C, Rezende MC (1993) Cationic and anionic halochromism. J Phys Org Chem 6(11):637–641. doi:10.1002/poc.610061108

    Article  CAS  Google Scholar 

  39. Lalevée J, Allonas X, Jacques P (2006) Electronic distribution and solvatochromism investigation of a model radical (2,2,6,6-tetramethylpiperidine N-oxyl: tempo) through TD-DFT calculations including PCM solvation. J Mol Struct THEOCHEM 767(1–3):143–147. doi:10.1016/j.theochem.2006.05.054

    Article  Google Scholar 

  40. Cerón-Carrasco JP, Jacquemin D, Laurence C, Planchat A, Reichardt C, Sraïdi K (2014) Determination of a solvent hydrogen-bond acidity scale by means of the solvatochromism of pyridinium-N-phenolate betaine dye 30 and PCM-TD-DFT calculations. J Phys Chem B 118(17):4605–4614. doi:10.1021/jp501534n

    Article  Google Scholar 

  41. Etienne T, Michaux C, Monari A, Assfeld X, Perpète EA (2014) Theoretical computation of betain B30 solvatochromism using a polarizable continuum model. Dyes Pigments 100:24–31. doi:10.1016/j.dyepig.2013.07.017

    Article  CAS  Google Scholar 

  42. Silva DL, Murugan NA, Kongsted J, Ågren H, Canuto S (2014) Self-aggregation and optical absorption of stilbazolium merocyanine in chloroform. J Phys Chem B 118(7):1715–1725. doi:10.1021/jp411178h

    Article  CAS  Google Scholar 

  43. Silva DL, Barreto RC, Lacerda EG Jr, Coutinho K, Canuto S (2014) One- and two-photon absorption of fluorescein dianion in water: a study using S-QM/MM methodology and ZINDO method. Spectrochim Acta A Mol Biomol Spectrosc 119:63–75. doi:10.1016/j.saa.2013.04.035

    Article  CAS  Google Scholar 

  44. Murugan NA (2011) Modeling solvatochromism of a quinolinium betaine dye in water solvent using sequential hybrid QM/MM and semicontinuum approach. J Phys Chem B 115(5):1056–1061. doi:10.1021/jp1049342

    Article  CAS  Google Scholar 

  45. Meier H (2005) Conjugated oligomers with terminal donor–acceptor substitution. Angew Chem Int Ed 44(17):2482–2506. doi:10.1002/anie.200461146

    Article  CAS  Google Scholar 

  46. Raposo MMM, Sousa AMRC, Kirsch G, Cardoso P, Belsley M, de Matos GE, Fonseca AMC (2006) Synthesis and characterization of dicyanovinyl-substituted thienylpyrroles as new nonlinear optical chromophores. Org Lett 8(17):3681–3684. doi:10.1021/ol061277s

    Article  CAS  Google Scholar 

  47. Razus AC, Birzan L, Cristea M, Tecuceanu V, Blanariu L, Enache C (2009) Novel mono- and bis-azo dyes containing the azulen-1-yl moiety: synthesis, characterization, electronic spectra and basicity. Dyes Pigments 80(3):337–342. doi:10.1016/j.dyepig.2008.08.011

    Article  CAS  Google Scholar 

  48. Rettig W, Kharlanov V, Effenberger F, Steybe F (2005) Excited state relaxation properties of donor–acceptor-bithiophene and related compounds. Chem Phys Lett 404(4–6):272–278. doi:10.1016/j.cplett.2005.01.096

    Article  CAS  Google Scholar 

  49. Domínguez M, Rezende M, Márquez S (2013) Theoretical study of the solvatochromism of a donor-acceptor bithiophene. J Mol Model 19(2):689–696. doi:10.1007/s00894-012-1593-y

    Article  Google Scholar 

  50. Ramirez CB, Carrasco N, Rezende MC (1995) Halochromism and solvatochromism of a [small pi]* probe in binary solvent mixtures. J Chem Soc Faraday Trans 91(21):3839–3842. doi:10.1039/FT9959103839

    Article  CAS  Google Scholar 

  51. Effenberger F, Würthner F (1993) 5-dimethylamino-5′-nitro-2, 2′-bithiophene—a new dye with pronounced positive solvatochromism. Angew Chem Int Ed Engl 32(5):719–721. doi:10.1002/anie.199307191

    Article  Google Scholar 

  52. Effenberger F, Wuerthner F, Steybe F (1995) Synthesis and solvatochromic properties of donor-acceptor-substituted oligothiophenes. J Org Chem 60(7):2082–2091. doi:10.1021/jo00112a032

    Article  CAS  Google Scholar 

  53. Meng S, Ma J (2008) Solvatochromic shift of donor − acceptor substituted bithiophene in solvents of different polarity: quantum chemical and molecular dynamics simulations. J Phys Chem B 112(14):4313–4322. doi:10.1021/jp710456p

    Article  CAS  Google Scholar 

  54. Fukuda R, Ehara M (2014) An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: the accuracy of excitation energies and intuitive charge-transfer indices. J Chem Phys 141(15):154104. doi:10.1063/1.4897561

    Article  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  56. Domínguez M, Oñate R, Núñez G (2008) MolecV1.0: a program to calculate the number of molecules in a given volume. USACH, Santiago

    Google Scholar 

  57. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106(22):6638–6646. doi:10.1021/ja00334a030

    Article  CAS  Google Scholar 

  58. Jorgensen WL (1986) Optimized intermolecular potential functions for liquid alcohols. J Phys Chem 90(7):1276–1284. doi:10.1021/j100398a015

    Article  CAS  Google Scholar 

  59. Jorgensen WL, Swenson CJ (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107(3):569–578. doi:10.1021/ja00289a008

    Article  CAS  Google Scholar 

  60. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  61. Coutinho K, Canuto S (2003) DICE:a Monte Carlo program for molecular liquid simulation. University of Sao Paulo, Sao Paulo

    Google Scholar 

  62. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373. doi:10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  63. Caputo MC, Provasi PF, Benitez L, Georg HC, Canuto S, Coutinho K (2014) Monte Carlo–quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water. J Phys Chem A 118(32):6239–6247. doi:10.1021/jp411303n

    Article  CAS  Google Scholar 

  64. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) An efficient statistically converged average configuration for solvent effects. Chem Phys Lett 437(1–3):148–152. doi:10.1016/j.cplett.2007.02.012

    Article  CAS  Google Scholar 

  65. Georg HC, Coutinho K, Canuto S (2007) Solvent effects on the UV-visible absorption spectrum of benzophenone in water: a combined Monte Carlo quantum mechanics study including solute polarization. J Chem Phys 126(3):034507. doi:10.1063/1.2426346

    Article  Google Scholar 

  66. Reichardt C, Welton T (2010) Empirical parameters of solvent polarity. Chapter 7 in. Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinhiem, pp 425–508. doi:10.1002/9783527632220.ch7

Download references

Acknowledgments

We are grateful to Freie Universität Berlin for computational facilities. We are also grateful to Professor Sylvio Canuto for allowing us access to DICE software. M.C.R. acknowledges the Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT project 1140212, and M.D. acknowledges the Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT project 11140497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Domínguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, M., Rezende, M.C. A Monte Carlo–quantum mechanics study of a solvatochromic π* probe. J Mol Model 22, 218 (2016). https://doi.org/10.1007/s00894-016-3083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3083-0

Keywords

Navigation