Skip to main content
Log in

Theoretical study of the global and local reactivity of a series of 3-aryl coumarins

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Coumarins are bioactive derivatives of the 1-benzopyran-2-one family with biological properties, such as antioxidant, antiviral, anti-inflammatory, and antitumoral, among others. In this work, the theoretical study of global (η, μ , μ +, ω , ω +, and Δ\(\omega^{ \pm }\)) and local reactivity properties (f k +, f k , f k 0, f k (2), Δρ k Elec, and Δρ k Nuc) of a series of 18 substituted 3-aryl coumarins is carried out through density functional theory methods including solvation effect. From the global reactivity point of view, the substituted compounds are better electron donors than the non-substituted 3-aryl coumarin. In contrast, from the local reactivity point of view, the C4 site of the pyrone ring shows the highest probability for a nucleophilic attack; radical attacks are also described within the pyrone ring, whereas electrophilic attacks are mainly described for the phenyl ring or in atoms of the substituent. In addition, a statistical analysis was carried out in order to validate the global reactivity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borges F, Roleira F, Milhazes N, Uriarte E, Santana L (2009) Front Med Chem 4:23–85

    Google Scholar 

  2. Murray RDH (1995) Nat Prod Rep 12:477

    Article  CAS  Google Scholar 

  3. Viña D, Matos MJ, Yañez M, Santana L, Uriarte E (2012) Med Chem Commun 3:213–218

    Article  Google Scholar 

  4. Shaikh MH, Subhedar DD, Shingate BB, Kalam Khan FA, Sangshetti JN, Khedkar VM, Nawale L, Sarkar D, Navale GR, Shinde SS (2016) Med Chem Res 25:790–804

    Article  CAS  Google Scholar 

  5. Wu HR, Zhang W, Pang X-Y, Gong Y, Obulqasim XMU, Li H-F, Zhu Y (2015) J Asian Nat Prod Res 17:1196–1203

    Article  CAS  Google Scholar 

  6. Bai Y, Li D, Zhou T, Qin N, Li Z, Yu Z, Hua H (2016) J Funct Foods 20:453–462

    Article  CAS  Google Scholar 

  7. Najmanova I, Dosedel M, Hrdina R, Anzenbacher P, Filipsky T, Riha M, Mladenka P (2015) Curr Top Med Chem 15:830–849

    Article  CAS  Google Scholar 

  8. Molnar M, Sarkanj B, Cacic M, Gille L, Strelec I (2014) Pharm Chem 6:313–320

    Google Scholar 

  9. Torres FC, Brucker N, Andrade SF, Kawano DF, Garcia SC, von Poser GL, Eifler-Lima VL (2014) Curr Top Med Chem 14:2600–2623

    Article  CAS  Google Scholar 

  10. Kasumbwe K, Venugopala KN, Mohanlall V, Odhav B (2014) J Med Plants Res 8:274–281

    Article  Google Scholar 

  11. Thota S, Nadipelly K, Shenkesi A, Yerra R (2015) Med Chem Res 24:1162–1169

    Article  CAS  Google Scholar 

  12. Mirunalini S, Deepalakshmi K, Manimozhi J (2014) Biomed Aging Pathol 4:131–135

    Article  CAS  Google Scholar 

  13. Alberto ME, Cosentino C, Russo N (2012) Struct Chem 23:831–839

    Article  CAS  Google Scholar 

  14. Zhang HY, Wang LF (2004) J Mol Struct 673:199–202

    Article  CAS  Google Scholar 

  15. Farmanzadeh D, Najafi M (2013) J Theo Comp Chem 12:1350058/28

    Google Scholar 

  16. Mazzone G, Malaj N, Galano A, Russo N, Toscano M (2015) RSC Adv 5:565–575

    Article  CAS  Google Scholar 

  17. Meléndez FJ, Durand-Niconoff JS, Domínguez-Ortiz MA, García-Barradas O, Caballero NA, González E (2016) Int J Quantum Chem 116:663–669

    Article  Google Scholar 

  18. Matos MJ, Pérez-Cruz F, Vázquez-Rodríguez S, Uriarte E, Santana L, Borges F, Olea-Azar C (2013) Bioorg Med Chem 21:3900–3906

    Article  CAS  Google Scholar 

  19. Roussaki M, Kontogiorgis CA, Hadjiparlov-Litina D, Hamilakis S, Detsi A (2010) Bioorg Med Chem 20:3889–3892

    Article  CAS  Google Scholar 

  20. Glossman-Mitnik D (2013) Chem Central J 7:155

    Article  Google Scholar 

  21. Sadasivam K, Jayaprakasam R, Kumaresan R (2012) J Theor Comp Chem 11:871–893

    Article  CAS  Google Scholar 

  22. Ortega-Moo C, Garza J, Vargas R (2016) Theor Chem Acc 135:1–12

    Article  CAS  Google Scholar 

  23. Cheng Z, Ren J, Li Y, Chang W, Chen Z (2002) Bioorg Med Chem 10:4067–4073

    Article  CAS  Google Scholar 

  24. Soto-Rojo R, Baldenebro-Lopez J, Glossman-Mitnik D (2016) Theor Chem Acc 135:1–7

    Article  CAS  Google Scholar 

  25. Pearson RG (1973) Hard and soft acids and bases. Pennsylvania, Stroudsburg

    Google Scholar 

  26. Pearson RG, Parr RG (1983) J Am Chem Soc 105:7512–7516

    Article  Google Scholar 

  27. Nalewajski RF (1984) J Am Chem Soc 106:944–945

    Article  CAS  Google Scholar 

  28. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  29. Méndez F, Galván M, Garritz A, Vela A, Gázquez JL (1992) J Mol Struct (THEOCHEM) 277:81–86

    Article  Google Scholar 

  30. Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970

    Article  Google Scholar 

  31. Zhan CG, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  32. Chattaraj PK, Chakraborty A, Giri S (2009) J Phys Chem A 113:10068–11074

    Article  CAS  Google Scholar 

  33. Morell C, Gázquez JL, Vela A, Guégan F, Chermette H (2014) Phys Chem Chem Phys 16:26832–26842

    Article  CAS  Google Scholar 

  34. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  35. Morell C, Grand A, Toro-Labbe A (2005) J PhysChem A 109:205–212

    CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  37. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  38. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  39. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem 96:6630–6636

    Article  CAS  Google Scholar 

  40. AMPAC10 (1992–2013) Semichem, Inc. 12456 W Grand Terrace-Suited, Shawnee, KS 66216

  41. Li X, Frisch MJ (2006) J Chem Theory Comput 2:835–839

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  43. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  44. Espinoza M, Olea-Azar C, Speisky H, Rodríguez J (2009) Spectrochim Acta Part A Mol Biomol Spectrosc 71:1638–1643

    Article  Google Scholar 

  45. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999) BBA Gen Subj 1427:13–23

    Article  CAS  Google Scholar 

  46. Jin ZQ, Chen X (1988) J Pharmacol Toxicol Methods 39:63–70

    Article  Google Scholar 

  47. Sharma OP, Bhat TK (2009) Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  48. Jabbari M, Moallem HR (2015) Can J Chem 93:558–563

    Article  CAS  Google Scholar 

  49. Andrei V, Bunea A-I, Tudorache A, Gáspár S, Vasilescu A (2014) Electroanalysis 26:2677–2685

    Article  CAS  Google Scholar 

  50. Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  51. Li Q, Racine JS (2005) Nonparametric econometrics: theory and practice. Princeton University Press, New Jersey

    Google Scholar 

  52. Hayfield T, Racine JS (2008) J Stat Softw 27:1–32

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank to the Laboratorio Nacional de Supercómputo del Sureste de México (LNS-BUAP, Puebla, México). MHM thanks Conacyt-México for Grant No. CB-2011-01-169409.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Sergio Durand-Niconoff or Myrna H. Matus.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand-Niconoff, J.S., Matus, M.H., Juárez-Cerrillo, S.F. et al. Theoretical study of the global and local reactivity of a series of 3-aryl coumarins. Theor Chem Acc 135, 249 (2016). https://doi.org/10.1007/s00214-016-2005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2005-7

Keywords

Navigation