Skip to main content
Log in

Intrinsic relative nucleophilicity of indoles

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The range of applicability of intrinsic (i.e., electronic) relative indices for quantifying electrophilicity and nucleophilicity responses (Chamorro et al. in J Phys Chem A 117(12):2636–2643, 2013) is extended to the characterization of coupling reactions of indoles with benzhydrylium ions and with the strongly electron-deficient heteroarene 4,6-dinitrobenzofuroxan. The reactivity categorization based on experimental kinetic evidence for such a electrophile/nucleophile coupling (Lakhdar et al. in J Org Chem 71(24):9088–9095, 2006) is rationalized in terms of purely electronic descriptors, revealing the polar nucleophilic activation of indole as a key factor associated with the initial rate-determining C–C coupling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Mayr H, Patz M (1994) Scales of nucleophilicity and electrophilicity—a system for ordering polar organic and organometallic reactions. Angew Chem Int Ed Engl 33(9):938–957. doi:10.1002/anie.199409381

    Article  Google Scholar 

  2. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc 123(39):9500–9512. doi:10.1021/ja010890y

    Article  CAS  Google Scholar 

  3. Chamorro E, Duque-Norena M, Perez P (2009) A comparison between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct Theochem 896(1–3):73–79. doi:10.1016/j.theochem.2008.11.009

    Article  CAS  Google Scholar 

  4. Chamorro E, Duque-Norena M, Notario R, Perez P (2013) Intrinsic relative scales of electrophilicity and nucleophilicity. J Phys Chem A 117(12):2636–2643. doi:10.1021/jp312143t

    Article  CAS  Google Scholar 

  5. Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924. doi:10.1021/ja983494x

    Article  CAS  Google Scholar 

  6. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(6):2065–2091. doi:10.1021/cr040109f

    Article  CAS  Google Scholar 

  7. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107(25):4973–4975. doi:10.1021/jp034707u

    Article  CAS  Google Scholar 

  8. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107(9):PR46–PR74. doi:10.1021/cr078014b

    Article  CAS  Google Scholar 

  9. Chattaraj PK, Giri S, Duley S (2011) Update 2 of: electrophilicity index. Chem Rev 111(2):PR43–PR75. doi:10.1021/cr100149p

    Article  Google Scholar 

  10. Chamorro E, Duque-Norena M, Perez P (2009) Further relationships between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct Theochem 901(1–3):145–152. doi:10.1016/j.theochem.2009.01.014

    Article  CAS  Google Scholar 

  11. Domingo LR, Perez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9(20):7168–7175. doi:10.1039/c1ob05856h

    Article  CAS  Google Scholar 

  12. Perez P, Toro-Labbe A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Org Chem 67(14):4747–4752. doi:10.1021/jo020255q

    Article  CAS  Google Scholar 

  13. Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107(36):7068–7072. doi:10.1021/jp035435y

    Article  CAS  Google Scholar 

  14. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101(5):520–534. doi:10.1002/qua.20307

    Article  CAS  Google Scholar 

  15. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122(9):2010–2018. doi:10.1021/ja9924039

    Article  CAS  Google Scholar 

  16. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111(10):1966–1970. doi:10.1021/jp065459f

    Article  CAS  Google Scholar 

  17. Mayr H, Ofial AR (2008) Do general nucleophilicity scales exist? J Phys Org Chem 21(7–8):584–595. doi:10.1002/poc.1325

    Article  CAS  Google Scholar 

  18. Minegishi S, Kobayashi S, Mayr H (2004) Solvent nucleophilicity. J Am Chem Soc 126(16):5174–5181. doi:10.1021/ja031828z

    Article  CAS  Google Scholar 

  19. Minegishi S, Mayr H (2003) How constant are Ritchie’s “constant selectivity relationships”? A general reactivity scale for n-, pi-, and sigma-nucleophiles. J Am Chem Soc 125(1):286–295. doi:10.1021/ja021010y

    Article  CAS  Google Scholar 

  20. Bentley TW (2010) How does the s(e plus n) equation work? Comparisons with a modified Swain–Scott equation (e plus sn) and revision of the n − 1 scale of solvent nucleophilicity. J Phys Org Chem 23(1):30–36. doi:10.1002/poc.1578

    CAS  Google Scholar 

  21. Bentley TW (2010) A design to prevent floating within the n scale of nucleophilicity. J Phys Org Chem 23(9):836–844. doi:10.1002/poc.1670

    Article  CAS  Google Scholar 

  22. Bentley TW (2011) Nucleophilicity parameters for strong nucleophiles in dimethyl sulfoxide. A direct alternative to the s(e plus n) equation. J Phys Org Chem 24(4):282–291. doi:10.1002/poc.1747

    Article  CAS  Google Scholar 

  23. Mayr H (2011) Reply to t. W. Bentley: limitations of the s(e + n) and related equations. Angew Chem Int Ed 50(16):3612–3618. doi:10.1002/anie.201007923

    Article  CAS  Google Scholar 

  24. Mayr H, Lakhdar S, Maji B, Ofial AR (2012) A quantitative approach to nucleophilic organocatalysis. Beilstein J Org Chem 8:1458–1478. doi:10.3762/bjoc.8.166

    Article  CAS  Google Scholar 

  25. Mayr H, Ofial AR (2005) Kinetics of electrophile–nucleophile combinations: a general approach to polar organic reactivity. Pure Appl Chem 77(11):1807–1821. doi:10.1351/pac200577111807

    Article  CAS  Google Scholar 

  26. Mayr H, Ofial AR (2015) A quantitative approach to polar organic reactivity. SAR QSAR Environ Res 26(7–9):619–646. doi:10.1080/1062936x.2015.1078409

    Article  CAS  Google Scholar 

  27. Mayr H (2015) Reactivity scales for quantifying polar organic reactivity: the benzhydrylium methodology. Tetrahedron 71(32):5095–5111. doi:10.1016/j.tet.2015.05.055

    Article  CAS  Google Scholar 

  28. Richter D, Hampel N, Singer T, Ofial AR, Mayr H (2009) Synthesis and characterization of novel quinone methides: reference electrophiles for the construction of nucleophilicity scales. Eur J Org Chem 19:3203–3211. doi:10.1002/ejoc.200900299

    Article  Google Scholar 

  29. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1873. doi:10.1021/cr990029p

    Article  CAS  Google Scholar 

  30. Geerlings P, De Proft F (2008) Conceptual dft: the chemical relevance of higher response functions. Phys Chem Chem Phys 10(21):3028–3042. doi:10.1039/b717671f

    Article  CAS  Google Scholar 

  31. Perez P, Chamorro E, Ayers PW (2008) Universal mathematical identities in density functional theory: results from three different spin-resolved representations. J Chem Phys 128(20):204108. doi:10.1063/1.2916714

    Article  CAS  Google Scholar 

  32. Gazquez JL, Vela A, Galvan M (1987) Fukui function, electronegativity and hardness in the Kohn–Sham theory. Struct Bond 66:79–97

    Article  CAS  Google Scholar 

  33. Galvan M, Vela A, Gazquez JL (1988) Chemical-reactivity in spin-polarized density functional theory. J Phys Chem 92(22):6470–6474. doi:10.1021/j100333a056

    Article  CAS  Google Scholar 

  34. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113(5):1854–1855. doi:10.1021/ja00005a072

    Article  CAS  Google Scholar 

  35. Brotzel F, Chu YC, Mayr H (2007) Nucleophilicities of primary and secondary amines in water. J Org Chem 72(10):3679–3688. doi:10.1021/jo062586z

    Article  CAS  Google Scholar 

  36. Chamorro E, Melin J (2015) On the intrinsic reactivity index for electrophilicity/nucleophilicity responses. J Mol Model 21(3):1–3. doi:10.1007/s00894-015-2608-2

    Article  CAS  Google Scholar 

  37. Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR, Mayr H (2006) Nucleophilic reactivities of indoles. J Org Chem 71(24):9088–9095. doi:10.1021/jo0614339

    Article  CAS  Google Scholar 

  38. Cacchi S, Fabrizi G (2005) Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 105(7):2873–2920. doi:10.1021/cr040639b

    Article  CAS  Google Scholar 

  39. Humphrey GR, Kuethe JT (2006) Practical methodologies for the synthesis of indoles. Chem Rev 106(7):2875–2911. doi:10.1021/cr0505270

    Article  CAS  Google Scholar 

  40. Gribble GW (2000) Recent developments in indole ring synthesis-methodology and applications. J Chem Soc Perkin Trans 1(7):1045–1075. doi:10.1039/a909834h

    Article  Google Scholar 

  41. Bandini M, Eichholzer A (2009) Catalytic functionalization of indoles in a new dimension. Angew Chem Int Ed 48(51):9608–9644. doi:10.1002/anie.200901843

    Article  CAS  Google Scholar 

  42. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44(29):4442–4489. doi:10.1002/anie.200500368

    Article  CAS  Google Scholar 

  43. Steinmetz KA, Potter JD (1996) Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96(10):1027–1039. doi:10.1016/s0002-8223(96)00273-8

    Article  CAS  Google Scholar 

  44. Kochanowska-Karamyan AJ, Hamann MT (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110(8):4489–4497. doi:10.1021/cr900211p

    Article  CAS  Google Scholar 

  45. Sidhu JS, Singla R, Mayank JV (2016) Indole derivatives as anticancer agents for breast cancer therapy: a review. Anti-Cancer Agents Med Chem 16(2):160–173. doi:10.2174/1871520615666150520144217

    Article  CAS  Google Scholar 

  46. Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15(2):221–250. doi:10.1007/s11101-015-9406-4

    Article  CAS  Google Scholar 

  47. Zhang M-Z, Chen Q, Yang G-F (2015) A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 89:421–441. doi:10.1016/j.ejmech.2014.10.065

    Article  CAS  Google Scholar 

  48. Sandtorv AH (2015) Transition metal-catalyzed c–h activation of indoles. Adv Synth Catal 357(11):2403–2435. doi:10.1002/adsc.201500374

    Article  CAS  Google Scholar 

  49. Netz N, Opatz T (2015) Marine indole alkaloids. Mar Drugs 13(8):4814–4914. doi:10.3390/md13084814

    Article  CAS  Google Scholar 

  50. Makosza M, Wojciechowski K (2015) Application of nucleophilic substitution of hydrogen in nitroarenes to the chemistry of indoles. Chem Heterocycl Compd 51(3):210–222. doi:10.1007/s10593-015-1687-4

    Article  CAS  Google Scholar 

  51. Kim J, Park W (2015) Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol 53(7):421–428. doi:10.1007/s12275-015-5273-3

    Article  CAS  Google Scholar 

  52. Gupta N, Goyal D (2015) Synthesis of indole and its derivatives in water. Chem Heterocycl Compd 51(1):4–16. doi:10.1007/s10593-015-1651-3

    Article  CAS  Google Scholar 

  53. Arora PK, Sharma A, Bae H (2015) Microbial degradation of indole and its derivatives. J Chem. doi:10.1155/2015/129159

    Google Scholar 

  54. Walsh CT (2014) Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem Biol 9(12):2718–2728. doi:10.1021/cb500695k

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C01

  56. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093. doi:10.1021/cr9904009

    Article  CAS  Google Scholar 

  57. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. The international series of monographs on chemistry. Oxford University Press, Oxford

    Google Scholar 

  58. Jaramillo P, Domingo LR, Chamorro E, Perez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct Theochem 865(1–3):68–72. doi:10.1016/j.theochem.2008.06.022

    Article  CAS  Google Scholar 

  59. Terrier F, Lakhdar S, Boubaker T, Goumont R (2005) Ranking the reactivity of superelectrophilic heteroaromatics on the electrophilicity scale. J Org Chem 70(16):6242–6253. doi:10.1021/jo0505526

    Article  CAS  Google Scholar 

  60. Terrier F, Lakhdar S, Goumont R, Boubaker T, Buncel E (2004) Electrophilicity parameters for sigma-complexation by uncharged electron-deficient aromatic and heteroaromatic structures. Chem Commun 22:2586–2587. doi:10.1039/b410346d

    Article  Google Scholar 

  61. Terrier F, Pouet M-J, Halle J-C, Hunt S, Jones JR, Buncel E (1993) Electrophilic heteroaromatic substitutions: reactions of 5-x-substituted indoles with 4,6-dinitrobenzofuroxan. J Chem Soci Perkin Trans 2(9):1665–1672. doi:10.1039/P29930001665

    Article  Google Scholar 

  62. Perez P, Domingo LR, Aurell AJ, Contreras R (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron 59(17):3117–3125. doi:10.1016/s0040-4020(03)00374-0

    Article  CAS  Google Scholar 

  63. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on diels-alder reactions. J Phys Chem A 106(29):6871–6875. doi:10.1021/jp020715j

    Article  CAS  Google Scholar 

  64. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in diels-alder reactions. Tetrahedron 58(22):4417–4423. doi:10.1016/s0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  65. Jennings P, Jones AC, Mount AR, Thomson AD (1997) Electrooxidation of 5-substituted indoles. J Chem Soc Faraday Trans 93(21):3791–3797. doi:10.1039/a703128i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Professor Alberto Vela on the occasion of his 65th birthday. The continuous support from FONDECYT (Chile) through Projects 1140343(E.C.), 1140341(P.P.), and 11130589 (M.D.-N.) is gratefully acknowledged. We also are indebted to the Ministerio de Economía y Competitividad (Spain) Project CTQ2013-45646-P (L.R.D.) and the predoctoral contract from the European Social Fund BES-2014-068258 (M.R.-G.). Prof L.R.D. thanks FONDECYT for the continuous support received through the Cooperación Internacional programs. Finally, E.C. and P.P. thank the Millennium Nucleus Chemical Processes and Catalysis (CPC), Grant Number NC 120082, and the Universidad Andres Bello (UNAB) for support through research Grants DI-806-15/R and DI-793-15/R, respectively. We acknowledged the anonymous reviewers whose constructive criticism has helped us to improve the quality of our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Chamorro.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, E., Duque-Noreña, M., Ríos-Gutiérrez, M. et al. Intrinsic relative nucleophilicity of indoles. Theor Chem Acc 135, 202 (2016). https://doi.org/10.1007/s00214-016-1974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1974-x

Keywords

Navigation