Skip to main content
Log in

DFT approaches to transport calculations in magnetic single-molecule devices

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electron transport properties of single-molecule devices based on the [Fe(tzpy)2(NCS)2] complex placed between two gold electrodes have been explored using three different atomistic DFT methods. This kind of single-molecule devices is quite appealing because they can present magnetoresistance effects at room temperature. The three employed computational approaches are: (i) self-consistent non-equilibrium Green functions (NEGF) with periodic models that can be described as the most accurate between the state-of-art methods, and two non-self-consistent NEGF approaches using either periodic or non-periodic description of the electrodes (ii and iii). The analysis of the transmission spectra obtained with the three methods indicates that they provide similar qualitative results. To obtain a reasonable agreement with the experimental data, it is mandatory to employ density functionals beyond the commonly employed GGA (i.e., hybrid functionals) or to include on-site corrections for the Coulomb repulsion (GGA+U method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment world scientific series in nanotechnology and nanoscience. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  2. Chen A, Hutchby J, Zhirnov V, Bourianoff G (eds) (2015) Emerging nanoelectronic devices. Wiley, Chichester

    Google Scholar 

  3. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40(6):3336–3355

    Article  CAS  Google Scholar 

  4. Sanvito S (2010) Molecular spintronics the rise of spinterface science. Nat Phys 6(8):562–564

    Article  CAS  Google Scholar 

  5. Hirohata A, Takanashi K (2014) Future perspectives for spintronic devices. J Phys D Appl Phys 47(19):193001

    Article  Google Scholar 

  6. Fusil S, Garcia V, Barthelemy A, Bibes M (2014) Magnetoelectric devices for spintronics. Annu Rev Mater Res 44(1):91–116. doi:10.1146/annurev-matsci-070813-113315

    Article  CAS  Google Scholar 

  7. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T (2015) Spin hall effects. Rev Mod Phys 87(4):1213–1260

    Article  Google Scholar 

  8. Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116(7):4318–4440

    Article  CAS  Google Scholar 

  9. Metzger RM (2015) Unimolecular electronics. Chem Rev 115(11):5056–5115

    Article  CAS  Google Scholar 

  10. Guldi DM, Nishihara H, Venkataraman L (2015) Molecular wires. Chem Soc Rev 44(4):842–844

    Article  CAS  Google Scholar 

  11. Aradhya SV, Venkataraman L (2013) Single-molecule junctions beyond electronic transport. Nat Nano 8(6):399–410

    Article  CAS  Google Scholar 

  12. Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2016) Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett 16(1):218–226

    Article  Google Scholar 

  13. Kim WY, Choi YC, Min SK, Cho Y, Kim KS (2009) Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices. Chem Soc Rev 38(8):2319–2333

    Article  CAS  Google Scholar 

  14. Hirose K, Kobayashi N (2014) Quantum transport calculations for nanosystems. Pan Stanford Publishing, Singapore

    Google Scholar 

  15. Di Ventra M (2008) Electrical transport in nanoscale systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Stokbro K, Taylor J, Brandbyge M, Guo H (2005) Ab-initio non-equilibrium Green’s function formalism for calculating electron transport in molecular devices. Lect Notes Phys 680:117–151

    Article  CAS  Google Scholar 

  17. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63(24):245407

    Article  Google Scholar 

  18. Zimbovskaya NA, Pederson MR (2011) Electron transport through molecular junctions. Phys Rep 509(1):1–87

    Article  CAS  Google Scholar 

  19. Buttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207–6215

    Article  Google Scholar 

  20. Caroli C, Combesco R, Nozieres P, Saintjam D (1971) Direct calculation of tunneling current. J Phys C Solid State Phys 4(8):916–917

    Article  Google Scholar 

  21. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401

    Article  Google Scholar 

  22. Verzijl CJO, Seldenthuis JS, Thijssen JM (2013) Applicability of the wide-band limit in DFT-based molecular transport calculations. J Chem Phys 138(9):094102

    Article  CAS  Google Scholar 

  23. Verzijl CJO, Thijssen JM (2012) DFT-based molecular transport implementation in ADF/BAND. J Phys Chem C 116(46):24393–24412

    Article  CAS  Google Scholar 

  24. Rocha AR, Garcia-Suarez VM, Bailey S, Lambert C, Ferrer J, Sanvito S (2006) Spin and molecular electronics in atomically generated orbital landscapes. Phys Rev B 73(8):085414

    Article  Google Scholar 

  25. Atomistix ToolKit ATK (2015) 2015.1 version. QuantumWise A/S

  26. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J Phys Cond Matter 9(4):767–808

    Article  CAS  Google Scholar 

  27. Pertsova A, Canali CM, Pederson MR, Rungger I, Sanvito S (2015) Electronic transport as a driver for self-interaction-corrected methods. In: Advances in atomic, molecular, and optical physics, vol 64. Academic Press, London, pp 29–86

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (revision A.1). Wallingford, CT

  29. Shao YH, Gan ZT, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng XT, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kus T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen YQ, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji HJ, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stuck D, Su YC, Thom AJW, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung YS, Kong J, Lambrecht DS, Liang WZ, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215

    Article  CAS  Google Scholar 

  30. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Article  Google Scholar 

  31. Furche F, Ahlrichs R, Hattig C, Klopper W, Sierka M, Weigend F (2014) Turbomole. Wires Comput Mol Sci 4(2):91–100

    Article  CAS  Google Scholar 

  32. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren XG, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175–2196

    Article  CAS  Google Scholar 

  33. Herrmann C, Groß L, Steenbock T, Solomon GC (2014) Artaios. version 1.9

  34. Arnold A, Weigend F, Evers F (2007) Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation, and application to benzenedithiol. J Chem Phys 126(17):174101

    Article  CAS  Google Scholar 

  35. Palacios JJ, Pérez-Jiménez AJ, Louis E, Vergés JA (2001) Fullerene-based molecular nanobridges: a first-principles study. Phys Rev B 64(11):115411

    Article  Google Scholar 

  36. Ferrer J, Lambert CJ, Garcia-Suarez VM, Manrique DZ, Visontai D, Oroszlany L, Rodriguez-Ferradas R, Grace I, Bailey SWD, Gillemot K, Sadeghi H, Algharagholy LA (2014) GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New J Phys 16:093029

    Article  Google Scholar 

  37. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Cond Matter 14(11):2745–2779

    Article  CAS  Google Scholar 

  38. Sánchez-Portal D, Ordejón P, Canadell E (2004) Computing the properties of materials from first principles with SIESTA. In: Kaltsoyannis N, McGrady JE (eds) Principles and applications of density functional theory in inorganic chemistry II. Springer, Berlin, pp 103–170

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  40. Aravena D, Ruiz E (2011) Coherent transport through spin-crossover single molecules. J Am Chem Soc 134(2):777–779

    Article  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. 3. The role of the exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  42. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401

    Article  Google Scholar 

  43. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    Article  Google Scholar 

  44. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potential for K to AU including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  45. Tewary S, Gass IA, Murray KS, Rajaraman G (2013) Theoretical perspectives on redox “non-innocent” oxazolidine N-oxide iron nitroxide complexes. Eur J Inorg Chem 5–6:1024–1032

    Article  Google Scholar 

  46. Ruiz E (2014) Charge transport properties of spin crossover systems. Phys Chem Chem Phys 16(1):14–22

    Article  CAS  Google Scholar 

  47. Cirera J, Paesani F (2012) Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. Inorg Chem 51(15):8194–8201

    Article  CAS  Google Scholar 

  48. Jensen KP, Cirera J (2009) Accurate computed enthalpies of spin crossover in iron and cobalt complexes. J Phys Chem A 113(37):10033–10039

    Article  CAS  Google Scholar 

  49. Toher C, Sanvito S (2008) Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. Phys Rev B 77(15):155402

    Article  Google Scholar 

  50. Baadji N, Sanvito S (2012) Giant resistance change across the phase transition in spin-crossover molecules. Phys Rev Lett 108:217201

    Article  CAS  Google Scholar 

  51. Zhang Y (2014) Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach. J Chem Phys 141(21):214703

    Article  Google Scholar 

  52. Al-Galiby QH, Sadeghi H, Algharagholy LA, Grace I, Lambert C (2016) Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale 8(4):2428–2433

    Article  CAS  Google Scholar 

  53. Rincon-Garcia L, Ismael AK, Evangeli C, Grace I, Rubio-Bollinger G, Porfyrakis K, Agrait N, Lambert CJ (2016) Molecular design and control of fullerene-based bi-thermoelectric materials. Nat Mater 15(3):289–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research reported here was supported by the Spanish Ministerio de Economía y Competitividad (Grant CTQ2015-64579-C3-1-P, MINECO/FEDER, UE). E.R. thanks Generalitat de Catalunya for an ICREA Academia award. A.M.-R. acknowledges the University of Barcelona for a collaboration grant. D.A. thanks CONICYT + PAI “Concurso nacional de apoyo al retorno de investigadores/as desde el extranjero, convocatoria 2014 82140014” for financial support. E.R. thankfully acknowledges the computer resources in the Barcelona Supercomputer Center, technical expertise and assistance provided by the Red Española de Supercomputación. D.A. thanks the program Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Ruiz.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Rodríguez, A., Aravena, D. & Ruiz, E. DFT approaches to transport calculations in magnetic single-molecule devices. Theor Chem Acc 135, 192 (2016). https://doi.org/10.1007/s00214-016-1941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1941-6

Keywords

Navigation