Skip to main content
Log in

Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: the effect of the electrostatic embedding scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Periodic density functional theory (DFT) and hybrid ONIOM time-dependent DFT/MM cluster calculations have been carried out to investigate the ground- and excited-state properties of the crystalline structures of the enolic and ketonic tautomeric forms of a propoxy-substituted dibenzothiazolylphenol molecule (OPr), a prototype for systems undergoing the excited-state intramolecular proton transfer process. The crystalline structures of the tautomeric forms are well reproduced and, as expected, at the ground state, the enol polymorph is predicted to be more stable than the keto one. At the excited state, the effect of the environment on time-dependent DFT calculations has been accounted for by including a charge embedding scheme, and the influence of different kinds of point charges (Mulliken, CM5, RESP and Q Eq) in determining the optical properties of the central molecule has been investigated. The results reveal that, in fair agreement with experimental data, the absorption (emission) energies of the enol (keto) OPr molecule is red-shifted of about 3 (3) nm going from the gas phase to chloroform and blue-shifted of 10 (23) nm going from the gas to the crystal phase when the electronic embedding with Mulliken charges is employed. The electrostatic embedding influences the excited-state properties more severely than the ground-state properties, and apart the Q Eq charges, all other models provide Stokes shifts in reasonable agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singer KD, Lalama SL, Sohn JE, Small RD (1987) Chapter II-8: electro-optic organic materials. In: Zyss J, Chemla DS (eds) Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, pp 437–468

    Chapter  Google Scholar 

  2. Ramamurthy V (1991) Photochemistry in organized and constrained media. Wiley-VCH, New York

    Google Scholar 

  3. Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds. Plenum Press, New York

    Google Scholar 

  4. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716. doi:10.1021/cr980069d

    Article  CAS  Google Scholar 

  5. Dürr H, Bouas-Laurent H (2003) Photochromism: molecules and systems, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  6. Sakai K, Kawamura H, Kobayashi N et al (2014) Highly efficient solid-state red fluorophores using ESIPT: crystal packing and fluorescence properties of alkoxy-substituted dibenzothiazolylphenols. CrystEngComm 16:3180–3185. doi:10.1039/C3CE42109K

    Article  CAS  Google Scholar 

  7. Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55–70. doi:10.2307/3571331

    Article  CAS  Google Scholar 

  8. Presti D, Labat F, Pedone A et al (2014) Computational protocol for modeling thermochromic molecular crystals: salicylidene aniline as a case study. J Chem Theory Comput 10:5577–5585. doi:10.1021/ct500868s

    Article  CAS  Google Scholar 

  9. Mutai T, Satou H, Araki K (2005) Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687. doi:10.1038/nmat1454

    Article  CAS  Google Scholar 

  10. Harada J, Fujiwara T, Ogawa K (2007) Crucial role of fluorescence in the solid-state thermochromism of salicylideneanilines. J Am Chem Soc 129:16216–16221. doi:10.1021/ja076635g

    Article  CAS  Google Scholar 

  11. Chung JW, You Y, Huh HS et al (2009) Shear- and UV-induced fluorescence switching in stilbenic π-dimer crystals powered by reversible [2 + 2] cycloaddition. J Am Chem Soc 131:8163–8172. doi:10.1021/ja900803d

    Article  CAS  Google Scholar 

  12. Hongo K, Watson MA, Sánchez-Carrera RS et al (2010) Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study. J Phys Chem Lett 1:1789–1794. doi:10.1021/jz100418p

    Article  CAS  Google Scholar 

  13. Pedone A, Presti D, Menziani MC (2012) On the ability of periodic dispersion-corrected DFT calculations to predict molecular crystal polymorphism in para-diiodobenzene. Chem Phys Lett 541:12–15. doi:10.1016/j.cplett.2012.05.049

    Article  CAS  Google Scholar 

  14. Kronik L, Tkatchenko A (2014) Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc Chem Res 47:3208–3216. doi:10.1021/ar500144s

    Article  CAS  Google Scholar 

  15. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  16. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410. doi:10.1039/b715018k

    Article  CAS  Google Scholar 

  17. Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: a Multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. a test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. doi:10.1021/jp962071j

    Article  CAS  Google Scholar 

  18. Vreven T, Morokuma K (2000) The ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) method for the first singlet excited (S1) state photoisomerization path of a retinal protonated Schiff base. J Chem Phys 113:2969–2975. doi:10.1063/1.1287059

    Article  CAS  Google Scholar 

  19. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  20. Dovesi R, Orlando R, Civalleri B et al (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Krist 220:571–573. doi:10.1524/zkri.220.5.571.65065

    CAS  Google Scholar 

  21. Dovesi R, Saunders VR, Roetti C et al (2010) CRYSTAL09 user’s manual. Università di Torino, Torino

    Google Scholar 

  22. Presti D, Pedone A, Menziani MC et al (2014) Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation. CrystEngComm 16:102–109. doi:10.1039/c3ce41758a

    Article  CAS  Google Scholar 

  23. Presti D, Pedone A, Menziani MC (2014) Unraveling the polymorphism of [(p-cymene)Ru(κN-INA)Cl2] through dispersion-corrected DFT and NMR GIPAW calculations. Inorg Chem 53:7926–7935. doi:10.1021/ic5006743

    Article  CAS  Google Scholar 

  24. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. doi:10.1007/BF00533485

    Article  CAS  Google Scholar 

  25. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the Becke–Lee–Yang–Parr (B-LYP) density functional theory with various basis sets. Chem Phys Lett 197:499–505. doi:10.1016/0009-2614(92)85807-M

    Article  CAS  Google Scholar 

  26. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi:10.1002/jcc.10189

    Article  CAS  Google Scholar 

  27. Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Parandekar PV, Mayhall NJ, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN09, Revision D.01. Wallingford, Gaussian

    Google Scholar 

  28. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840. doi:10.1063/1.1740588

    Article  CAS  Google Scholar 

  29. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8:527–541. doi:10.1021/ct200866d

    Article  CAS  Google Scholar 

  30. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004

    Article  CAS  Google Scholar 

  31. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. doi:10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  32. Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. doi:10.1021/j100161a070

    Article  CAS  Google Scholar 

  33. Martin F, Zipse H (2005) Charge distribution in the water molecule: a comparison of methods. J Comput Chem 26:97–105. doi:10.1002/jcc.20157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. P. Hratchian and M. J. Frisch are kindly acknowledged. Computational resources for this work were granted by “Project 100339” (2013-2014) at GENCI-IDRIS (Orsay, France). This work was supported by the Italian Ministero dell’Istruzione, dell’ Università e della Ricerca (MIUR) through the “Programma di Ricerca di rilevante Interesse Nazionale” (PRIN) Grant 2010C4R8M8_002 entitled “Nanoscale Functional Organization of (bio)Molecules and Hybrids for Targeted Application in Sensing, Medicine and Biotechnology” and the “Futuro in Ricerca” (FIRB) Grant RBFR1248UI 002 entitled “Novel Multiscale Theorethical/Computational Strategies for the Design of Photo and Thermo Responsive Hybrid Organic–Inorganic Components for Nanoelectronic Circuits.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Presti.

Additional information

Published as part of the special collection of articles “Charge Transfer Modeling in Chemistry”.

Electronic supplementary material

B3LYP intramolecular parameters of the gas-phase enol OPr obtained with different basis-sets; B3LYP-D* results for the main structural enol parameters; molecular atomic labelling and intermolecular interactions of the keto cluster; all frontier orbitals of gas-phase tautomers, solvated ones and clusters.

Supplementary material 1 (PDF 4426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presti, D., Pedone, A., Ciofini, I. et al. Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: the effect of the electrostatic embedding scheme. Theor Chem Acc 135, 86 (2016). https://doi.org/10.1007/s00214-016-1808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1808-x

Keywords

Navigation