Advertisement

The rich and complex potential energy surface of the ethanol dimer

  • Alba Vargas-Caamal
  • Filiberto Ortiz-Chi
  • Diego Moreno
  • Albeiro Restrepo
  • Gabriel MerinoEmail author
  • José Luis CabellosEmail author
Regular Article
Part of the following topical collections:
  1. XI Girona Seminar Collection: Carbon, Metal, and Carbon-Metal Clusters

Abstract

The potential energy surface of the ethanol dimer is systematically explored via density functional theory and high level ab initio computations. A picture with a multitude of local minima very close in energy emerges. Three groups of interactions are at play stabilizing the dimers. On one hand, electrostatic attraction leads to a number of structures where dimers interact via hydrogen bonds. Our computations also reveal a large number of structures where the dominant stabilization arises from C–H···O hydrogen bonds and a smaller set of structures stabilized by purely dispersive interactions between the alkyl chains. Calculated shifts of the stretching O–H frequencies are in very good agreement with experimental values. Energy decomposition analysis shows that the electrostatic term dominates the stabilization of the O–H···O hydrogen bond clusters, while for the other dimers, polarization, charge transfer, and dispersion become the major stabilizing effects.

Keywords

Ethanol dimer Potential energy surface analysis Hydrogen bond Energy decomposition analysis 

Notes

Acknowledgments

Conacyt (Grants INFRA-2013-01-204586) and Moshinsky Foundation supported the work in Mérida. The CGSTIC (Xiuhcóatl) at Cinvestav is acknowledged for allocation of computational resources. Partial funding for this work was provided by Universidad de Antioquia via “Estrategia de sostenibilidad 2015–2016.” Martin Suhm and Tobias Wassermann kindly provided Cartesian coordinates for the structures reported in their work [8]. A.V.-C. and D.M. thank Contact for the PhD fellowships.

Supplementary material

214_2015_1615_MOESM1_ESM.pdf (5.6 mb)
Supplementary material 1 (PDF 5719 kb)

References

  1. 1.
    Perchard JP, Josien ML (1968) J Chim Phys Phys-Chim Biol 65:1834–1855Google Scholar
  2. 2.
    Perchard JP, Josien ML (1968) J Chim Phys Phys-Chim Biol 65:1856–1875Google Scholar
  3. 3.
    Ehbrecht M, Huisken F (1997) J Phys Chem A 101:7768–7777CrossRefGoogle Scholar
  4. 4.
    Haber T, Schmitt U, Suhm MA (1999) Phys Chem Chem Phys 1:5573–5582CrossRefGoogle Scholar
  5. 5.
    Provencal RA, Casaes RN, Roth K, Paul JB, Chapo CN, Saykally RJ, Tschumper GS, Schaefer HF (2000) J Phys Chem A 104:1423–1429CrossRefGoogle Scholar
  6. 6.
    Hearn JPI, Cobley RV, Howard BJ (2005) J Chem Phys 123:134324CrossRefGoogle Scholar
  7. 7.
    Emmeluth C, Dyczmons V, Kinzel T, Botschwina P, Suhm MA, Yanez M (2005) Phys Chem Chem Phys 7:991–997CrossRefGoogle Scholar
  8. 8.
    Wassermann TN, Suhm MA (2010) J Phys Chem A 114:8223–8233CrossRefGoogle Scholar
  9. 9.
    Dyczmons V (2004) J Phys Chem A 108:2080–2086CrossRefGoogle Scholar
  10. 10.
    Gonzalez L, Mo O, Yanez M (1999) J Chem Phys 111:3855–3861CrossRefGoogle Scholar
  11. 11.
    Durig JR, Larsen RA (1990) J Mol Struct 238:195–222CrossRefGoogle Scholar
  12. 12.
    Cabellos J, Ortiz-Chi F, Ramírez A, Merino G (2013) Bilatu. Mérida, CinvestavGoogle Scholar
  13. 13.
    Saunders M (2004) J Comput Chem 25:621–626CrossRefGoogle Scholar
  14. 14.
    Grande-Aztatzi R, Martínez-Alanis PR, Cabellos JL, Osorio E, Martínez A, Merino G (2014) J Comput Chem 35:2288–2296CrossRefGoogle Scholar
  15. 15.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  16. 16.
    Dunning TH, Hay PJ (1977) Modern theoretical chemistry. H. F. Schaefer, New YorkGoogle Scholar
  17. 17.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  18. 18.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, Revision C.01. WallingfordGoogle Scholar
  20. 20.
    Grimme S (2011) Wiley Interdiscip Rev-Comput Mol Sci 1:211–228CrossRefGoogle Scholar
  21. 21.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  22. 22.
    Su PF, Li H (2009) J Chem Phys 131:014102CrossRefGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  24. 24.
    Ibarguen C, Manrique-Moreno M, Hadad CZ, David J, Restrepo A (2013) Phys Chem Chem Phys 15:3203–3211CrossRefGoogle Scholar
  25. 25.
    Zapata-Escobar A, Manrique-Moreno M, Guerra D, Hadad CZ, Restrepo A (2014) J Chem Phys 140:184312CrossRefGoogle Scholar
  26. 26.
    Laury ML, Carlson MJ, Wilson AK (2012) J Comput Chem 33:2380–2387CrossRefGoogle Scholar
  27. 27.
    Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963–10970CrossRefGoogle Scholar
  28. 28.
    Hincapie G, Acelas N, Castano M, David J, Restrepo A (2010) J Phys Chem A 114:7809–7814CrossRefGoogle Scholar
  29. 29.
    David J, Guerra D, Restrepo A (2009) J Phys Chem A 113:10167–10173CrossRefGoogle Scholar
  30. 30.
    Acelas N, Hincapie G, Guerra D, David J, Restrepo A (2013) J Chem Phys 139:044310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alba Vargas-Caamal
    • 1
  • Filiberto Ortiz-Chi
    • 2
  • Diego Moreno
    • 1
  • Albeiro Restrepo
    • 3
  • Gabriel Merino
    • 1
    Email author
  • José Luis Cabellos
    • 1
    Email author
  1. 1.Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados del IPNMéridaMexico
  2. 2.Instituto Tecnológico de Calkiní en el Estado de CampecheCalkiníMexico
  3. 3.Instituto de QuímicaUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations