Skip to main content
Log in

Extent of charge separation and exciton delocalization for electronically excited states in a triphenylamine-C60 donor–acceptor conjugate: a combined molecular dynamics and TD-DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Triphenylamine-pyrrolidine-C60 is a potential material to construct high-efficient dye-sensitized solar cells. A combined molecular dynamics and time-dependent density functional theory study has been carried out to analyze charge separation and exciton delocalization in excited states of two constitutional isomers of this compound. Insight into the intrinsic structure of the excited states is provided. The presence of states with a hybrid excitonic and charge-transfer character is suggested to promote the direct charge separation process by excitation, which could have a significant impact on the efficiency of the light-harvesting species. A greater amount of such hybrid states is found at short distances between the triphenylamine fragment and the C60 cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Honda S, Nogami T, Ohkita H, Benten H, Ito S (2009) ACS Appl Mater Interfaces 1:804–810

    Article  CAS  Google Scholar 

  2. Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) Science 265:1684–1686

    Article  CAS  Google Scholar 

  3. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324–1338

    Article  Google Scholar 

  4. Imahori H, Umeyama T, Ito S (2009) Acc Chem Res 42:1809–1818

    Article  CAS  Google Scholar 

  5. Mauter MS, Elimelech M (2008) Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  6. Kumar P, Chand S (2012) Prog Photovolt 20:377–415

    Article  CAS  Google Scholar 

  7. Huang Y, Kramer EJ, Heeger AJ, Bazan GC (2014) Chem Rev 114:7006–7043

    Article  CAS  Google Scholar 

  8. Segura JL, Martín N, Guldi DM (2005) Chem Soc Rev 34:31–47

    Article  CAS  Google Scholar 

  9. Preat J (2010) J Phys Chem C 114:16716–16725

    Article  CAS  Google Scholar 

  10. Xu J, Wang J, Liang G, Bai Z, Wang L, Xu W, Shen X (2010) Bull Korean Chem Soc 31:2531–2536

    Article  CAS  Google Scholar 

  11. Wu G, Kong F, Zhang Y, Zhang X, Li J, Chen W, Liu W, Ding Y, Zhang C, Zhang B, Yao J, Dai S (2014) J Phys Chem C 118:8756–8765

    Article  CAS  Google Scholar 

  12. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Chem Rev 107:926–952

    Article  CAS  Google Scholar 

  13. Ning Z, Zhang Q, Wu Q, Pei H, Liu B, Tian H (2008) J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  14. Pinzón JR, Gasca DC, Sankaranarayanan SG, Bottari G, Torres T, Guldi DM, Echegoyen L (2009) J Am Chem Soc 131:7727–7734

    Article  Google Scholar 

  15. Maggini M, Scorrano G, Prato M (1993) J Am Chem Soc 115:9798–9799

    Article  CAS  Google Scholar 

  16. Delgado JL, Osuna S, Bouit PA, Martínez-Alvarez R, Espíldora E, Solà M, Martín N (2009) J Org Chem 74:8174–8180

    Article  CAS  Google Scholar 

  17. Head-Gordon M (1996) J Phys Chem 100:13213–13225

    Article  CAS  Google Scholar 

  18. Grimme S (2004) Reviews in computational chemistry, vol 20. Wiley Inc., New York

    Book  Google Scholar 

  19. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4035

    Article  CAS  Google Scholar 

  20. Barone V, Improta R, Rega N (2008) Acc Chem Res 41:605–616

    Article  CAS  Google Scholar 

  21. González L, Escudero D, Serrano-Andrés L (2012) Chem Phys Chem 13:28–51

    Google Scholar 

  22. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  23. Casida ME (2009) J Mol Struct (THEOCHEM) 914:3–18

    Article  CAS  Google Scholar 

  24. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  25. Cai ZL, Sendt K, Reimers JR (2002) J Chem Phys 117:5543–5549

    Article  CAS  Google Scholar 

  26. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007–4016

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C (2009) Pople JA Gaussian 09, in. Gaussian Inc, Wallingford

    Google Scholar 

  28. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V (2012) Kollman PA AMBER 12. University of California, San Francisco

    Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  32. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  33. Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562

    Article  CAS  Google Scholar 

  34. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103

    Article  Google Scholar 

  35. Jacquemin D, Mennucci B, Adamo C (2011) Phys Chem Chem Phys 13:16987–16998

    Article  CAS  Google Scholar 

  36. Few S, Frost JM, Kirkpatrick J, Nelson J (2014) J Phys Chem C 118:8253–8261

    Article  CAS  Google Scholar 

  37. Liu T, Troisi A (2011) J Phys Chem C 115:2406–2415

    Article  CAS  Google Scholar 

  38. Plasser F, Lischka H (2012) J Chem Theory Comput 8:2777–2789

    Article  CAS  Google Scholar 

  39. Luzanov AV, Zhikol OA (2010) Int J Quantum Chem 110:902–924

    CAS  Google Scholar 

  40. Baruah T, Pederson MR (2006) J Chem Phys 125:164706

    Article  Google Scholar 

  41. Baruah T, Pederson MR (2009) J Chem Theory Comput 5:834–843

    Article  CAS  Google Scholar 

  42. Chapman CT, Liang W, Li X (2011) J Phys Chem Lett 2:1189–1192

    Article  CAS  Google Scholar 

  43. Leach S, Vervloet M, Desprès A, Bréheret E, Hare JP, Dennis TJ, Kroto HW, Taylor R, Walton DRM (1992) Chem Phys 160:451–466

    Article  CAS  Google Scholar 

  44. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) Science 335:1340–1344

    Article  CAS  Google Scholar 

  45. Kanai Y, Grossman JC (2007) Nano Lett 7:1967–1972

    Article  CAS  Google Scholar 

  46. Liu T, Cheung DL, Troisi A (2011) Phys Chem Chem Phys 13:21461–21470

    Article  CAS  Google Scholar 

  47. Hung YC, Jiang JC, Chao CY, Su WF, Lin ST (2009) J Phys Chem B 113:8268–8277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain (Projects CTQ2011-26573, CTQ2011-23156/BQU, and CTQ2011-25086) and the Generalitat de Catalunya (Project Number 2014SGR931, Xarxa de Referència en Química Teòrica i Computacional, and ICREA Academia 2009 prize for MS). JPM acknowledges CONACYT for his PhD fellowship (Register/Application Number 217067/312543) and SO the Spanish MINECO for Juan de la Cierva contract and European community for FP7-PEOPLE-2013-CIG-630978 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Solà.

Additional information

Published as part of the special collection of articles derived from the XI Girona Seminar and focused on Carbon, Metal, and Carbon–Metal Clusters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J.P., Osuna, S., Solà, M. et al. Extent of charge separation and exciton delocalization for electronically excited states in a triphenylamine-C60 donor–acceptor conjugate: a combined molecular dynamics and TD-DFT study. Theor Chem Acc 134, 12 (2015). https://doi.org/10.1007/s00214-015-1614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1614-x

Keywords

Navigation