Skip to main content
Log in

Basolateral amygdala and orbitofrontal cortex, but not dorsal hippocampus, are necessary for the control of reward-seeking by occasion setters

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Reward-seeking in the world is driven by cues that can have ambiguous predictive and motivational value. To produce adaptive, flexible reward-seeking, it is necessary to exploit occasion setters, other distinct features in the environment, to resolve the ambiguity of Pavlovian reward-paired cues. Despite this, very little research has investigated the neurobiological underpinnings of occasion setting, and as a result little is known about which brain regions are critical for occasion setting. To address this, we exploited a recently developed task that was amenable to neurobiological inquiry where a conditioned stimulus is only predictive of reward delivery if preceded in time by the non-overlapping presentation of a separate cue—an occasion setter. This task required male rats to maintain and link cue-triggered expectations across time to produce adaptive reward-seeking. We interrogated the contributions of the basolateral amygdala and orbitofrontal cortex to occasion setting as these regions are thought to be critical for the computation and exploitation of state value, respectively. Reversible inactivation of either structure prior to the occasion-setting task resulted in a profound inability of rats to use the occasion setter to guide reward-seeking. In contrast, inactivation of the dorsal hippocampus, a region fundamental for context-specific responding was without effect nor did inactivation of the basolateral amygdala or orbitofrontal cortex in a standard Pavlovian conditioning preparation affect conditioned responding. We conclude that neural activity within the orbitofrontal cortex and basolateral amygdala circuit is necessary to update and resolve ambiguity in the environment to promote cue-driven reward-seeking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen TA, Salz DM, McKenzie S, Fortin NJ (2016) Nonspatial sequence coding in CA1 neurons. J Neurosci 36:1547–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anagnostaras SG, Robinson TE (1996) Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110:1397–1414

    Article  CAS  PubMed  Google Scholar 

  • Anagnostaras SG, Schallert T, Robinson TE (2002) Memory processes governing amphetamine-induced psychomotor sensitization. Neuropsychopharmacology 26:703–715

    Article  CAS  PubMed  Google Scholar 

  • Averbeck BB, Costa VD (2017) Motivational neural circuits underlying reinforcement learning. Nat Neurosci 20:505–512

    Article  CAS  PubMed  Google Scholar 

  • Belova MA, Paton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns LH, Everitt BJ, Robbins TW (1999) Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement. Behav Brain Res 100:123–133

    Article  CAS  PubMed  Google Scholar 

  • Chang SE (2014) Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning. Behav Brain Res 273:52–56

    Article  PubMed  Google Scholar 

  • Chang SE, Wheeler DS, Holland PC (2012) Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiol Learn Mem 97:441–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhri N, Woods CA, Sahuque LL, Gill TM, Janak PH (2013) Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking. Eur J Neurosci 38:2751–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci 25:962–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser KM, Holland PC (2019) Occasion setting. Behav Neurosci 133:145–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser KM, Janak PH (2019) Occasion setters attain incentive motivational value: implications for contextual influences on reward-seeking. Learn Mem Cold Spring Harb N 26:291–298

    Article  Google Scholar 

  • Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30:296–309

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci 19:6610–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry 80:509–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland PC (1991) Acquisition and transfer of occasion setting in operant feature positive and feature negative discriminations. Learn Motiv 22:366–387

    Article  Google Scholar 

  • Holland PC (1992) Occasion setting in pavlovian conditioning. In, Psychology of learning and motivation. Elsevier, p 69–125. https://jhu.pure.elsevier.com/en/publications/occasion-setting-in-pavlovian-conditioning-3

  • Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694

    Article  PubMed  Google Scholar 

  • Holland PC, Hatfield T, Gallagher M (2001) Rats with basolateral amygdala lesions show normal increases in conditioned stimulus processing but reduced conditioned potentiation of eating. Behav Neurosci 115:945–950

    Article  CAS  PubMed  Google Scholar 

  • Holland PC, Lamoureux JA, Han JS, Gallagher M (1999) Hippocampal lesions interfere with Pavlovian negative occasion setting. Hippocampus 9:143–157

    Article  CAS  PubMed  Google Scholar 

  • Holland PC, Petrovich GD, Gallagher M (2002) The effects of amygdala lesions on conditioned stimulus-potentiated eating in rats. Physiol Behav 76:117–129

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Ambroggi F, Nicola SM, Fields HL (2008) Contributions of the amygdala and medial prefrontal cortex to incentive cue responding. Neuroscience 155:573–584

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo A, Murray EA (2007) Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J Neurosci 27:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AW, Gallagher M, Holland PC (2009) The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects. J Neurosci 29:696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JL, Esber GR, McDannald MA, Gruber AJ, Hernandez A, Mirenzi A, Schoenbaum G (2012) Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338:953–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keiflin R, Reese RM, Woods CA, Janak PH (2013) The orbitofrontal cortex as part of a hierarchical neural system mediating choice between two good options. J Neurosci 33:15989–15998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenberg NT, Pennington ZT, Holley SM, Greenfield VY, Cepeda C, Levine MS, Wassum KM (2017) Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations. J Neurosci 37:8374–8384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopatina N, McDannald MA, Styer CV, Sadacca BF, Cheer JF, Schoenbaum G (2015) Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. elife 4:e11299

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopatina N, Sadacca BF, McDannald MA, Styer CV, Peterson JF, Cheer JF, Schoenbaum G (2017) Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape. Behav Neurosci 131:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117:87–103

    Article  CAS  PubMed  Google Scholar 

  • Lucantonio F, Gardner MPH, Mirenzi A, Newman LE, Takahashi YK, Schoenbaum G (2015) Neural estimates of imagined outcomes in basolateral amygdala depend on orbitofrontal cortex. J Neurosci 35:16521–16530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDannald MA, Esber GR, Wegener MA, Wied HM, Liu T-L, Stalnaker TA, Jones JL, Trageser J, Schoenbaum G (2014) Orbitofrontal neurons acquire responses to “valueless” Pavlovian cues during unblocking. elife 3:e02653

    Article  PubMed  PubMed Central  Google Scholar 

  • McDannald MA, Saddoris MP, Gallagher M, Holland PC (2005) Lesions of orbitofrontal cortex impair rats’ differential outcome expectancy learning but not conditioned stimulus-potentiated feeding. J Neurosci 25:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer HC, Bucci DJ (2016a) Imbalanced activity in the orbitofrontal cortex and nucleus accumbens impairs behavioral inhibition. Curr Biol 26:2834–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer HC, Bucci DJ (2016b) Neural and behavioral mechanisms of proactive and reactive inhibition. Learn Mem 23:504–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer HC, Bucci DJ (2017) Setting the occasion for adolescent inhibitory control. Neurobiol Learn Mem 143:8–17

    Article  PubMed  Google Scholar 

  • Millan EZ, Reese RM, Grossman CD, Chaudhri N, Janak PH (2015) Nucleus accumbens and posterior amygdala mediate cue-triggered alcohol seeking and suppress behavior during the omission of alcohol-predictive cues. Neuropsychopharmacology 40:2555–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorman DE, Aston-Jones G (2014) Orbitofrontal cortical neurons encode expectation-driven initiation of reward-seeking. J Neurosci 34:10234–10246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SE, Saez A, Lau B, Salzman CD (2011) Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71:1127–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SE, Salzman CD (2009) The convergence of information about rewarding and aversive stimuli in single neurons. J Neurosci 29:11471–11483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SE, Salzman CD (2010) Re-valuing the amygdala. Curr Opin Neurobiol 20:221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SE, Salzman CD (2011) Representations of appetitive and aversive information in the primate orbitofrontal cortex. Ann N Y Acad Sci 1239:59–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27:4819–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes SL, Balleine BW (2013) Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. J Neurosci 33:8753–8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson JA, Robbins TW, Everitt BJ (2000) Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur J Neurosci 12:405–413

    Article  CAS  PubMed  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  • Pickens CL, Saddoris MP, Gallagher M, Holland PC (2005) Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav Neurosci 119:317–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann N Y Acad Sci 1121:54–71

    Article  PubMed  Google Scholar 

  • Ramos BMC, Siegel S, Bueno JLO (2002) Occasion setting and drug tolerance. Integr Physiol Behav Sci 37:165–177

    Article  PubMed  Google Scholar 

  • Saddoris MP, Gallagher M, Schoenbaum G (2005) Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46:321–331

    Article  CAS  PubMed  Google Scholar 

  • Saez A, Rigotti M, Ostojic S, Fusi S, Salzman CD (2015) Abstract context representations in primate amygdala and prefrontal cortex. Neuron 87:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saez RA, Saez A, Paton JJ, Lau B, Salzman CD (2017) Distinct roles for the amygdala and orbitofrontal cortex in representing the relative amount of expected reward. Neuron 95:70-77.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangha S, Chadick JZ, Janak PH (2013) Safety encoding in the basal amygdala. J Neurosci 33:3744–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller D, Weiner I (2004) Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience 128:15–25

    Article  CAS  PubMed  Google Scholar 

  • Schmajuk N, Holland PC (1998) Occasion setting: associative learning and cognition in animals, 1st edn. American Psychological Association, Washington, DC

    Book  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1:155–159

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    Article  CAS  PubMed  Google Scholar 

  • Sciascia JM, Reese RM, Janak PH, Chaudhri N (2015) Alcohol-seeking triggered by discrete pavlovian cues is invigorated by alcohol contexts and mediated by glutamate signaling in the basolateral amygdala. Neuropsychopharmacology 40:2801–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setlow B, Gallagher M, Holland PC (2002) The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur J Neurosci 15:1841–1853

    Article  PubMed  Google Scholar 

  • Shabel SJ, Janak PH (2009) Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc Natl Acad Sci U S A 106:15031–15036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe MJ, Schoenbaum G (2016) Back to basics: making predictions in the orbitofrontal-amygdala circuit. Neurobiol Learn Mem 131:201–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Shobe JL, Bakhurin KI, Claar LD, Masmanidis SC (2017) Selective modulation of orbitofrontal network activity during negative occasion setting. J Neurosci 37:9415–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalnaker TA, Cooch NK, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nat Neurosci 18:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolyarova A, Izquierdo A (2017) Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty. elife 6. https://doi.org/10.7554/eLife.27483

  • Takahashi YK, Chang CY, Lucantonio F, Haney RZ, Berg BA, Yau H-J, Bonci A, Schoenbaum G (2013) Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning. Neuron 80:507–518

    Article  CAS  PubMed  Google Scholar 

  • Trask S, Thrailkill EA, Bouton ME (2017) Occasion setting, inhibition, and the contextual control of extinction in Pavlovian and instrumental (operant) learning. Behav Processes 137:64–72

    Article  PubMed  Google Scholar 

  • Tye KM, Janak PH (2007) Amygdala neurons differentially encode motivation and reinforcement. J Neurosci 27:3937–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valyear MD, Villaruel FR, Chaudhri N (2017) Alcohol-seeking and relapse: a focus on incentive salience and contextual conditioning. Behav Processes 141:26–32

    Article  PubMed  Google Scholar 

  • Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 17:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Takahashi YK, Schoenbaum G, Niv Y (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Alex Haimbaugh and Erin Kong for excellent technical assistance. We would also like to thank Dr. Peter Holland and members of the Janak Lab for their comments, input, and support. We would like to acknowledge the immense impact Dr. Nadia Chaudhri had as an inspiration for this line of research.

Funding

This work was supported by NIH Grants DA035943 to PHJ and DA046136 to KMF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Fraser.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on Conditioned Determinants of Reward Seeking.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, K.M., Janak, P.H. Basolateral amygdala and orbitofrontal cortex, but not dorsal hippocampus, are necessary for the control of reward-seeking by occasion setters. Psychopharmacology 240, 623–635 (2023). https://doi.org/10.1007/s00213-022-06227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-022-06227-0

Keywords

Navigation