Skip to main content
Log in

The use of reaction time distributions to study attention in male rats: the effects of atomoxetine and guanfacine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Norepinephrine (NE) is involved in the control of sustained attention. Studies of sustained attention in humans include measures of reaction time (RT) and RT variability (RTV). The present study tested the role of NE using components of the RT distribution in rats in a manner thought to be similar to human studies of RTV.

Objectives

This study tested the effects of increased synaptic NE (atomoxetine (ATX)) and α-2 receptor binding (guanfacine) on attentional lapses in rats.

Methods

Male Sprague-Dawley rats (n = 20) were trained and tested in a two-choice RT task (2CRTT). Atomoxetine dose (saline, 0.1, 0.5, 1.0 mg/kg, i.p.), guanfacine dose (saline, 0.01, 0.1, 0.3 mg/kg, i.p.), and distractors were manipulated in three experiments. RT was divided into initiation time (IT) and movement time (MT). Analyses of distribution mode (peak) and deviation from the mode (skew) were then performed.

Results

ATX and guanfacine had no effect on IT mode, reduced IT devmode, and increased MT mode. When distractors were introduced, ATX again improved devmode, but a lack of interaction between ATX and distractor indicated that ATX did not prevent distractor-induced impairments.

Conclusions

IT devmode is a measure of distribution skew thought to reflect lapses of attention. The effects of ATX on IT devmode suggest that increased synaptic NE reduces attentional lapses. These findings are consistent with human reports of reduced RTV after ATX administration. The same pattern of results with guanfacine suggests that the effects of increased NE are due in part to binding at α-2 noradrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnsten AFT, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  • Baarendse PJJ, Vanderschuren LJMJ (2012) Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology 219:313–326

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA (2006) Attention-deficit hyperactivity disorder: a handbook for diagnosis and treatment, 3rd edn. Guilford Press, New York

    Google Scholar 

  • Bédard AV, Stein MA, Halperin JM, Krone B, Rajwan E, Newcorn JH (2015) Differential impact of methylphenidate and atomoxetine on sustained attention in youth with attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry 56:40–48

    Article  PubMed  Google Scholar 

  • Benn A, Robinson ESJ (2017) Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat. Psychopharmacology 234:255–266

    Article  CAS  PubMed  Google Scholar 

  • Bidwell LC, Dew RE, Kollins SH (2010) Alpha-2 adrenergic receptors and attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 12:366–373

    Article  PubMed Central  Google Scholar 

  • Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 61:1340–1350

    Article  PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular level of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Puntiverio M, Lerdrup LS, Grupe M, Larsen CW, Dietz AG, Andreasen JT (2019) Effect of ADHD medication in male C57BL/6J mice performing the rodent continuous performance test. Psychopharmacology:1–13

  • Chamberlain SR, del Campo N, Dowson J, Müller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Decamp E, Clark K, Schneider JS (2011) Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. Eur J Neurosci 34:1018–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Brown JW, Rueter LE, Mohler EG (2018) Profiling attention and cognition enhancing drugs in a rat touchscreen-based continuous performance test. Psychopharmacology 235:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750

    Article  CAS  PubMed  Google Scholar 

  • Fan LY, Chou TL, Gau SSF (2017) Neural correlates of atomoxetine improving inhibitory control and visual processing in drug-naïve adults with attention-deficit/hyperactivity disorder. Hum Brain Mapp 38:4850–4864

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernando ABP, Economidou D, Theobald DE, Zou M, Newman AH, Spoelder M, Caprioli D, Moreno M, Hipólito L, Aspinall AT, Robbins TW, Dalley JW (2012) Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology 219:341–352

    Article  CAS  PubMed  Google Scholar 

  • Gau SSF, Shang CY (2010) Improvement of executive functions in boys with attention deficit hyperactivity disorder: an open-label follow-up study with once-daily atomoxetine. Int J Neuropsychopharmacol 13:243–256

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Segal DS, Mandell AJ (1972) Effect of intraventricular infusion of dopamine and norepinephrine on motor activity. Physiol Behav 8:653–658

    Article  CAS  PubMed  Google Scholar 

  • Hauser J, Reissmann A, Sontag TA, Tucha O, Lange KW (2017) Effects of atomoxetine on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). ADHD Atten Deficit Hyperact Disord 9:253–262

    Article  Google Scholar 

  • Hausknecht KA, Acheson A, Farrar AM, Kieres AK, Shen R, Richards JB, Sabol KE (2005) Prenatal alcohol exposure causes attention deficits in male rats. Behav Neurosci 119:302–310

    Article  CAS  PubMed  Google Scholar 

  • Heil SH, Holmes HW, Bickel WK, Higgins ST, Badger GJ, Laws HF, Faries DE (2002) Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 67:149–156

    Article  CAS  PubMed  Google Scholar 

  • Hohle RH (1967) Component process latencies in reaction times of children and adults. Adv Child Dev Behav 3:225–261

    Article  Google Scholar 

  • Jäkälä P, Riekkinen M, Sirviö J, Koivisto E, Riekkinen P (1999) Clonidine, but not guanfacine, impairs choice reaction time performance in young healthy volunteers. Neuropsychopharmacology 21:495–502

    Article  PubMed  Google Scholar 

  • Jarrott B, Louis WJ, Summers RJ (1982) [3H]-guanfacine: a radioligand that selectively labels high affinity α2-adrenoceptor sites in homogenates of rat brain. Br J Pharmacol 75:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jentsch JD, Aarde SM, Seu E (2008) Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats. Psychopharmacology 202:497–504

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:23–53

    Article  Google Scholar 

  • Koffarnus MN, Katz JL (2011) Response requirement and increases in accuracy produced by stimulant drugs in a 5-choice serial reaction-time task in rats. Psychopharmacology 213:723–733

    Article  CAS  PubMed  Google Scholar 

  • Kofler MJ, Rapport MD, Sarver DE, Raiker J, Orban S, Friedman L, Kolomeyer E (2013) Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clin Psychol Rev 33:795–811

    Article  PubMed  Google Scholar 

  • Kratochvil CJ, Heiligenstein JH, Dittmann R, Spencer TJ, Biederman J, Wernicke J, Newcorn JH, Casat C, Milton D, Michelson D (2002) Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. J Am Acad Child Adolesc Psychiatry 41:776–784

    Article  PubMed  Google Scholar 

  • Kratz O, Studer P, Baack J, Malcherek S, Erbe K, Moll GH, Heinrich H (2012) Differential effects of methylphenidate and atomoxetine on attentional processes in children with ADHD: an event-related potential study using the Attention Network Test. Prog Neuro-Psychopharmacol Biol Psychiatry 37:81–89

    Article  CAS  Google Scholar 

  • Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139:870–900

    Article  PubMed  Google Scholar 

  • Leth-Steensen C, King Elbaz Z, Douglas VI (2000) Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol 104:167–190

    Article  CAS  Google Scholar 

  • Lin HY, Gau SSF (2016) Atomoxetine treatment strengthens an anti-correlated relationship between functional brain networks in medication-naïve adults with attention-deficit hyperactivity disorder: a randomized double-blind placebo-controlled clinical trial. Int J Neuropsychopharmacol 19:1–15

    Article  CAS  Google Scholar 

  • Liu YP, Huang TS, Tung CS, Lin CC (2015) Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle. Prog Neuro-Psychopharmacol Biol Psychiatry 56:81–90

    Article  CAS  Google Scholar 

  • Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D (2003) Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry 53:112–120

    Article  CAS  PubMed  Google Scholar 

  • Michelson D, Allen AJ, Busner J, Casat C, Dunn D, Kratochvil C, Newcorn J, Sallee FR, Sangal RB, Saylor K, West S, Kelsey D, Wernicke J, Trapp NJ, Harder D (2002) Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 159:1896–1901

    Article  PubMed  Google Scholar 

  • Milstein JA, Lehmann O, Theobald DEH, Dalley JW, Robbins TW (2007) Selective depletion of cortical noradrenaline by anti-dopamine beta-hydroxylase–saporin impairs attentional function and enhances the effects of guanfacine in the rat. Psychopharmacology 190:51–63

    Article  CAS  PubMed  Google Scholar 

  • Nandam LS, Hester R, Wagner J, Cummins TDR, Garner K, Dean AJ, Kim BN, Nathan PJ, Mattingley JB, Bellgrove MA (2011) Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 69:902–904

    Article  CAS  PubMed  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuro-Psychopharmacol Biol Psychiatry 32:34–41

    Article  CAS  Google Scholar 

  • Ni HC, Hwang Gu SL, Lin HY, Lin YJ, Yang LK, Huang HC, Gau SSF (2016) Atomoxetine could improve intra-individual variability in drug-naïve adults with attention-deficit/hyperactivity disorder comparably with methylphenidate: a head-to-head randomized clinical trial. J Psychopharmacol (Oxf) 30:459–467

    Article  CAS  Google Scholar 

  • Ni HC, Shang CY, Gau SSF, Lin YJ, Huang HC, Yang LK (2013) A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 16:1959–1973

    Article  CAS  PubMed  Google Scholar 

  • Paterson NE, Ricciardi J, Wetzler C, Hanania T (2011) Sub-optimal performance in the 5-choice serial reaction time task in rats was sensitive to methylphenidate, atomoxetine and d-amphetamine, but unaffected by the COMT inhibitor tolcapone. Neurosci Res 69:41–50

    Article  CAS  PubMed  Google Scholar 

  • Paterson NE, Wetzler C, Hackett A, Hanania T (2012) Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsychopharmacol 15:1473–1487

    Article  CAS  PubMed  Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillidge K, Porter AJ, Dudley JA, Tsai YC, Heal DJ, Stanford SC (2014) The behavioural response of mice lacking NK1 receptors to guanfacine resembles its clinical profile in treatment of ADHD. Br J Pharmacol 171:4785–4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posey DJ, Wiegand RE, Wilkerson J, Maynard M, Stigler KA, McDougle CJ (2006) Open-label atomoxetine for attention-deficit/ hyperactivity disorder symptoms associated with high-functioning pervasive developmental disorders. J Child Adolesc Psychopharmacol 16:599–610

    Article  PubMed  Google Scholar 

  • Richards J, Gancarz A, Hawk, Jr. L (2011) Animal models of behavioral processes that underlie the occurrence of impulsive behaviors in humans. In: Inhibitory control and drug abuse prevention: from research to translation. Springer Science & Business Media, pp 13–41

  • Robbins T (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  CAS  PubMed  Google Scholar 

  • Robinson ESJ (2012) Blockade of noradrenaline re-uptake sites improves accuracy and impulse control in rats performing a five-choice serial reaction time tasks. Psychopharmacology 219:303–312

    Article  CAS  PubMed  Google Scholar 

  • Robinson ESJ, Eagle DM, Mar AC, Banerjee G (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero S, Clavenna A, Reale L, Capuano A, Rossi F, Bonati M (2014) Guanfacine for attention deficit and hyperactivity disorder in pediatrics: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24:1578–1590

    Article  CAS  PubMed  Google Scholar 

  • Sabol KE, Richards JB, Broom SL, Roach JT, Hausknecht K (2003) Effects of stimulus salience and methamphetamine on choice reaction time in the rat: central tendency versus distribution skew. Behav Pharmacol 14:489–500

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Funct 2:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sallee FR, Kollins SH, Wigal TL (2012) Efficacy of guanfacine extended release in the treatment of combined and inattentive only subtypes of attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 22:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallee FR, Mcgough J, Wigal T, Donahue J, Lyne A, Biederman J, SPD503 Study Group (2009) Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 48:155–165

    Article  PubMed  Google Scholar 

  • Scahill L, Chappell P, Kim Y, Schultz RT, Katsovich L, Shepherd E, Arnsten AFT, Cohen DJ, Leckman JF (2001) A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry 158:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Shang CY, Gau SSF (2012) Improving visual memory, attention, and school function with atomoxetine in boys with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 22:353–363

    Article  PubMed  Google Scholar 

  • Sun H, Cocker PJ, Zeeb FD, Winstanley CA (2012) Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology 219:285–301

    Article  CAS  PubMed  Google Scholar 

  • Tamm L, Narad ME, Antonini TN, O'Brien KM, Hawk LW, Epstein JN (2012) Reaction time variability in ADHD: a review. Neurotherapeutics 9:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermans PBMWM, Schoop AMC, Van Zwieten PA (1982) Binding characteristics of [3H] guanfacine to rat brain α-adrenoceptors: comparison with [3H]clonidine. Biochem Pharmacol 31:899–905

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson A, Grayson B, Marsh S, Harte MK, Barnes SA, Marshall KM, Neill JC (2014) Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats. Eur Neuropsychopharmacol 24:1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M (2009) The effects of serotionin and/or noradrenaline reuptake inhibitors on impulsive-like action assessed by the three-choice serial reaction time task: a simple and valid model of impulsive action using rats. Behav Pharmacol 20:474–483

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AFT (2007) α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129:397–410

    Article  CAS  PubMed  Google Scholar 

  • Wehmeier PM, Schacht A, Ulberstad F, Lehmann M, Schneider-Fresenius C, Lehmkuhl G, Dittmann RW, Banaschewski T (2012) Does atomoxetine improve executive function, inhibitory control, and hyperactivity?: results from a placebo-controlled trial using quantitative measurement technology. J Clin Psychopharmacol 32:653–660

    Article  CAS  PubMed  Google Scholar 

  • Wehmeier PM, Schacht A, Wolff C, Otto WR, Dittmann RW, Banaschewski T (2011) Neuropsychological outcomes across the day in children with attention-deficit/hyperactivity disorder treated with atomoxetine: results from a placebo-controlled study using a computer-based continuous performance test combined with an infra-red motion-tracking device. J Child Adolesc Psychopharmacol 21:433–444

    Article  CAS  PubMed  Google Scholar 

  • Wilens TE, Robertson B, Sikirica V, Harper L, Young JL, Bloomfield R, Lyne A, Rynkowski G, Cutler AJ (2015) A randomized, placebo-controlled trial of guanfacine extended release in adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 54:916–925

    Article  PubMed  Google Scholar 

Download references

Funding

The department of Psychology at the University of Mississippi provided funding for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Sabol.

Ethics declarations

All procedures using animals were approved by the University of Mississippi Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redding, Z.V., Chawla, P. & Sabol, K.E. The use of reaction time distributions to study attention in male rats: the effects of atomoxetine and guanfacine. Psychopharmacology 236, 3579–3592 (2019). https://doi.org/10.1007/s00213-019-05329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05329-6

Keywords

Navigation