Skip to main content

Advertisement

Log in

microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Objectives

Major depressive disorder characterized as recurrent negative mood is one of the prevalent psychiatric diseases. Chronic stress plus lack of reward may induce long-term imbalance between reward and penalty circuits in the brain, leading to persistent negative mood. Numerous individuals demonstrate resilience to chronic mild stress. Molecular mechanisms for major depression and resilience in the brain remain unclear.

Methods

After juvenile mice were treated by the chronic unpredictable mild stress (CUMS) for 4 weeks, they were screened by sucrose preference, Y-maze and forced swimming tests to examine whether their behaviors were depression-like or not. mRNA and miRNA profiles were quantified by high-throughput sequencing in amygdala tissues harvested from control, CUMS-susceptible, and CUMS-resilience mice.

Results

1.5-fold ratio in reads per kilo-base per million reads was set to be the threshold to judge the involvement of mRNAs and miRNAs in the CUMS, major depression, or resilience. In the amygdala from CUMS-susceptible mice, the expression of genes relevant to GABAergic, cholinergic, glutamatergic, dopaminergic, and serotonergic synapses was changed, as well as the expression of genes that encoded signal pathways of PI3K-Akt, calcium, cAMP, MAPK, and drug addiction was imbalanced. The expression of these genes in the amygdala form CUMS-resilience mice was less changed.

Conclusions

The downregulation of genes relevant to synaptic functions and the imbalance of intra-signaling pathway in the amygdala are associated with major depression. Consistent results through sequencing mRNA and miRNA and using different methods validate our finding and conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afonso-Grunz F, Müller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72:3127

    Article  CAS  PubMed  Google Scholar 

  • Alex W, Mitchell PB, Bettina M, Schofield PR (2013) Implications of the use of genetic tests in psychiatry, with a focus on major depressive disorder: a review. Depress Anxiety 30:267–275

    Article  Google Scholar 

  • Amy G, Kiki C (2008) The role of the amygdala in bipolar disorder development. Dev Psychopathol 20:1285–1296

    Article  Google Scholar 

  • Anand A, Shekhar A (2010) Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala Annals of the New York Academy of Sciences 985:370–388

  • Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilharz TH, Humphreys DT, Preiss T (2010) miRNA effects on mRNA closed-loop formation during translation initiation. Prog Mol Subcell Biol 50:99–112

    Article  CAS  PubMed  Google Scholar 

  • Bellani M, Baiano M, Brambilla P (2011) Brain anatomy of major depression II. Focus on amygdala. Epidemiol Psychiatr Sci 20:33–36

    Article  CAS  PubMed  Google Scholar 

  • Bennett P et al (2008) Psychological factors associated with emotional responses to receiving genetic risk information. J Genet Couns 17:234–241

    Article  PubMed  Google Scholar 

  • Bergstrom A, Jayatissa MT, Wiborg O (2007) Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study. J Mol Neurosci 33:201–215

    Article  CAS  PubMed  Google Scholar 

  • Biggar KK, Storey KB (2011) The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175

    Article  CAS  PubMed  Google Scholar 

  • Bin-Bin L, Liu L, Xiao-Long L, Di G, Qing L, Li-Tao Y (2015) 7-Chlorokynurenic acid (7-CTKA) produces rapid antidepressant-like effects: through regulating hippocampal microRNA expressions involved in TrkB-ERK/Akt signaling pathways in mice exposed to chronic unpredictable mild stress. Psychopharmacology 232:541

    Article  CAS  Google Scholar 

  • Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11:307–316

    Article  PubMed  Google Scholar 

  • Brunoni A, Lopes MF (2008) A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 11:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Camp NJ, Cannon-Albright LA (2005) Dissecting the genetic etiology of major depressive disorder using linkage analysis. Trends Mol Med 11:138–144

    Article  CAS  PubMed  Google Scholar 

  • Choi J et al (2015) TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology 97:346–356

    Article  CAS  PubMed  Google Scholar 

  • Christensen T, Bisgaard CF, Wiborg O (2011) Biomarkers of anhedonic-like behavior, antidepressant drug refraction, and stress resilience in a rat model of depression. Neuroscience 196:66–79

    Article  CAS  PubMed  Google Scholar 

  • Christopher P, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88

    Article  CAS  Google Scholar 

  • Crowley JJ, Irwin L (2005) Opportunities to discover genes regulating depression and antidepressant response from rodent behavioral genetics Current Pharmaceutical Design 11:-

  • Dalmay T (2013) Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem 54:29

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annurevneurosci 15:353–375

    CAS  Google Scholar 

  • Dellu F, Mayo W, Cherkaoui J, Moal ML, Simon H (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain Res 588:132–139

    Article  CAS  PubMed  Google Scholar 

  • Downes GB, Gilbert DJ, Copeland NG, Gautam N, Jenkins NA (1999) Chromosomal mapping of five mouse G protein gamma subunits Genomics 57:173–176

  • Duman CH (2010) Models of depression Vitamins & Hormones-advances in Research & Applications 82:1-21

  • Dwivedi Y, Roy B, Lugli G, Rizavi H, Zhang H, Smalheiser NR (2015) Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 5:e682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhwuegi AS (2004) Central monoamines and their role in major depression ☆. Prog Neuro-Psychopharmacol Biol Psychiatry 28:435–451

    Article  CAS  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramírez MJ, Aisa B, Lasheras B, Rio JD, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology 199:1–14

    Article  CAS  PubMed  Google Scholar 

  • Friedlander MR et al (2014) Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15:R57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlander MR, Mackowiak SD, Na L, Wei C, Nikolaus R (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  CAS  PubMed  Google Scholar 

  • Friedman AK et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilloux JP et al (2012) Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry 17:1130–1142

    Article  CAS  PubMed  Google Scholar 

  • Gunn BG, Brown AR, Lambert JJ, Belelli D (2011) Neurosteroids and GABA(A) receptor interactions: a focus on stress front. Neurosci 5:131

    Google Scholar 

  • Hamilton JP, Chen MC, Gotlib IH (2013) Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective ☆. Neurobiol Dis 52:4–11

    Article  PubMed  Google Scholar 

  • Hastings RS, Parsey RV, Oquendo MA, Victoria A, John JM (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 29:952–959

    Article  PubMed  Google Scholar 

  • He J, Chen Q, Wei Y, Jiang F, Yang M, Hao S, Guo X, Chen D, Kang L (2016) MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc Natl Acad Sci U S A 113:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbi M, Korf J, Ormel J, Kema IP, den Boer JA (2010) Investigating the molecular basis of major depressive disorder etiology: a functional convergent genetic approach. Ann N Y Acad Sci 1148:42–56

    Article  CAS  Google Scholar 

  • Jr RR (2017) Guidelines for preparing color figures for everyone including the colorblind. Pharmacol Res 119:240–241

    Article  Google Scholar 

  • Jun Z L et al. (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder Proceedings of the National Academy of Sciences of the United States of America 110:9950–9955

  • Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA (2009) Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol 12:143–153

    Article  CAS  PubMed  Google Scholar 

  • Keele NB (2005) The role of serotonin in impulsive and aggressive behaviors associated with epilepsy-like neuronal hyperexcitability in the amygdala. Epilepsy Behav 7:325–335

    Article  PubMed  Google Scholar 

  • Kim TK et al (2016) G9a-mediated regulation of OXT and AVP expression in the basolateral amygdala mediates stress-induced lasting behavioral depression and its reversal by exercise. Mol Neurobiol 53:2843–2856

    Article  CAS  PubMed  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohoff FW (2010) Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 12:539–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma K, Guo L, Xu A, Cui S, Wang JH (2016a) Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex. PLoS One 11:e0159093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Xu A, Cui S, Sun MR, Xue YC, Wang JH (2016b) Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl Psychiatry 6:e910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manji HK et al (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 53:707–742

    Article  CAS  PubMed  Google Scholar 

  • Mei B et al (2014) Anhedonia was associated with the dysregulation of hippocampal HTR4 and microRNA Let-7a in rats. Physiol Behav 129:135–141

    Article  CAS  Google Scholar 

  • Miles Gregory C, Caroline Martine C, Carlezon WA, Edward M (2009) Amygdala GABAergic-rich neural grafts attenuate anxiety-like behavior in rats. Behav Brain Res 205:146–153

    Article  CAS  Google Scholar 

  • Minghui W, Zinaida P, Arenkiel BR, Bo L (2014) Synaptic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. J Neurosci 34:7485

    Article  CAS  Google Scholar 

  • Monk CS et al (2008) Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. Am J Psychiatr 165:90–98

    Article  PubMed  Google Scholar 

  • Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM (2011) Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry Biol Psychiatry 69:188–193

    Article  CAS  PubMed  Google Scholar 

  • Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606

    Article  CAS  PubMed  Google Scholar 

  • Natalia E et al (2010) Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 114:1302–1314

    Google Scholar 

  • Nicolas R, Wolf JM, Wolf OT (2011) Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev 35:104–114

    Google Scholar 

  • Olivier B, Chang-Gyu H, Thase ME (2012) Are we getting closer to valid translational models for major depression? Science 338:75–79

    Article  CAS  Google Scholar 

  • Orna I, Alon C (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16:201–212

    Article  CAS  Google Scholar 

  • Orna I et al (2014) MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 83:344–360

    Article  CAS  Google Scholar 

  • Overstreet DH (2012) Modeling depression in animal models. Methods Mol Biol 829:125

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Price JL (2010) Comparative aspects of amygdala connectivity. Ann N Y Acad Sci 985:50–58

    Article  Google Scholar 

  • Rajkowska G, Mahajan G, Maciag D, Sathyanesan M, Iyo AH, Moulana M, Kyle PB, Woolverton WL, Miguel-Hidalgo JJ, Stockmeier CA, Newton SS (2015) Oligodendrocyte morphometry and expression of myelin-related mRNA in ventral prefrontal white matter in major depressive disorder. J Psychiatr Res 65:53–62. https://doi.org/10.1016/j.jpsychires.2015.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauch SL, Shin LM, Wright CI (2010) Neuroimaging studies of amygdala function in anxiety disorders Annals of the New York Academy of Sciences 985:389–410

  • Robert K, Rudolf U (2012) Gene-environment interaction in major depression and antidepressant treatment response. Curr Psychiatry Rep 14:129–137

    Article  Google Scholar 

  • Sandi C, Haller J (2015) Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 16:290–304

    Article  CAS  PubMed  Google Scholar 

  • Sharon H et al (2011) MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J Neurosci 31:14191–14203

    Article  CAS  Google Scholar 

  • Skilbeck KJ, Johnston GAR, Hinton T (2010) Stress and GABA receptors. J Neurochem 112:1115–1130

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Giovanni L, Hui Z, Hooriyah R, Cook EH, Yogesh D (2014) Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One 9:e86469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalheiser NR et al (2011) MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol 14:1315

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Giovanni L, Rizavi HS, Torvik VI, Gustavo T, Yogesh D (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 7:e33201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southwick SM, Charney DS (2012) The science of resilience: implications for the prevention and treatment of depression Science 338:79

  • Stein MB, Dan JS (2008) Social anxiety disorders Cns Spectrums 4:17–17

  • Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM (2011) Update in the methodology of the chronic stress paradigm: internal control matters Behav Brain Funct,7,1(2011-04-27) 7:9

  • Sun X, Song Z, Si Y, Wang JH (2018) microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience Progress in Neuro-Psychopharmacology and Biological Psychiatry 86:150-165

  • Tasan RO et al (2010) The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression. J Neurosci 30:6282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsten K, Binder EB (2013) Gene-environment interactions in major depressive disorder. Can J Psychiatr 58:76–83

    Article  Google Scholar 

  • Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805–828

    Article  CAS  PubMed  Google Scholar 

  • Valinezhad OA, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607

    Google Scholar 

  • Vialou V, Robison AJ, LaPlant QC, Covington HE, Dietz DM, Ohnishi YN, Mouzon E, Rush AJ, Watts EL, Wallace DL, Iñiguez SD, Ohnishi YH, Steiner MA, Warren BL, Krishnan V, Bolaños CA, Neve RL, Ghose S, Berton O, Tamminga CA, Nestler EJ (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci 13:745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk N et al (2016) Amygdalar microRNA-15a is essential for coping with chronic stress. Cell Rep 17:1882–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk N et al (2014) MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J Neurosci 34:15070–15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JJ, Han MH (2014) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience 282:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GY, Zhu ZM, Cui S, Wang JH (2016) Glucocorticoid induces incoordination between glutamatergic and GABAergic neurons in the amygdala. PLoS One 11:e0166535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Cui S (2015) Multi-target therapy for subcellular incompatibility in brain disorders Brain Disorders & Therapy 4

  • Wang JH, Cui S (2017) Associative memory cells: formation, function and perspective. F1000research 6:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Cui S (2018) Associative memory cells and their working principle in the brain. F1000research 7:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen H, Mingyue Z, Boldizsár C, Gabriele F, Weiqi Z (2010) Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 35:1693

    Article  CAS  Google Scholar 

  • Whalen PJ, Shin LM, Somerville LH, Mclean AA, Kim H (2002) Functional neuroimaging studies of the amygdala in depression. Semin Clin Neuropsychiatry 7:234

    Article  PubMed  Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Cui S, Wang JH (2016) Incoordination among subcellular compartments is associated to depression-like behavior induced by chronic mild stress. Int J Neuropsychopharmacol 19:pyv122

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Liu B, Lei Z, Wang JH (2012) mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain,5,1(2012-06-09) 5:20

  • Zhu Z, Wang G, Ma K, Cui S, Wang JH (2017) GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression. Oncotarget 8:35933–35945

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors thank Kim Davis for proof reading during the revision. This study is funded by the National Key R&D Program of China (2016YFC1307101) and Natural Science Foundation China (81671071 and 81471123) to JHW.

Author information

Authors and Affiliations

Authors

Contributions

M Shen and Z Song contributed to experiments and data analyses. Jin-Hui Wang contributed to concept, project design, and paper writing.

Corresponding authors

Correspondence to Zhenhua Song or Jin-Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 5235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Song, Z. & Wang, JH. microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology 236, 2119–2142 (2019). https://doi.org/10.1007/s00213-019-05209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05209-z

Keywords

Navigation